nn.ConvTranspose2d(128, 64, kernel_size=(2, 2), stride=(2, 2))
时间: 2023-10-10 15:07:07 浏览: 168
This is a PyTorch module that performs a 2D transposed convolution operation with the following parameters:
- Input channels: 128
- Output channels: 64
- Kernel size: 2x2
- Stride: 2x2
The transposed convolution operation is used for upsampling feature maps in a neural network. It essentially performs the opposite operation of a regular convolution by mapping each input pixel to a larger output patch. The stride parameter controls the spacing between the output patches. In this case, the output feature map will be twice the size of the input feature map in both dimensions.
相关问题
pretrained_dict = torch.load('E:/fin/models/gen.pth') print(pretrained_dict.keys())上述语句打印出的键值dict_keys(['iteration', 'generator']) 怎么和下列生成器对齐:class ContextEncoder(nn.Module): def __init__(self): super(ContextEncoder, self).__init__() # 编码器 self.encoder = nn.Sequential( nn.Conv2d(4, 64, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), ) # 解码器 self.decoder = nn.Sequential( nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1), nn.Sigmoid(), ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x
在你提供的代码中,包含了一个名为ContextEncoder的类,该类包含了一个编码器和一个解码器。编码器使用了一个Sequential容器,其中包含了一系列卷积层、批量归一化层和LeakyReLU激活函数。解码器同样使用了一个Sequential容器,其中包含了一系列转置卷积层、批量归一化层和ReLU激活函数。最后一个转置卷积层的输出经过Sigmoid激活函数,输出的形状为(batch_size, 3, 64, 64),对应着RGB图像的三个通道。
而在你提供的代码中,打印出的字典中包含了两个键:iteration和generator。iteration表示训练迭代次数,而generator则是一个生成器。根据你提供的代码,无法判断这个生成器的具体实现,因此无法进一步判断它是否与ContextEncoder类对应。
加载InpaintingModel_gen.pth预训练模型时出现:RuntimeError: Error(s) in loading state_dict for ContextEncoder: Missing key(s) in state_dict: "encoder.0.weight", "encoder.0.bias", "encoder.2.weight", "encoder.2.bias", "encoder.3.weight", "encoder.3.bias", "encoder.3.running_mean", "encoder.3.running_var", "encoder.5.weight", "encoder.5.bias", "encoder.6.weight", "encoder.6.bias", "encoder.6.running_mean", "encoder.6.running_var",...并且载入的模型为:class ContextEncoder(nn.Module): def init(self): super(ContextEncoder, self).init() # 编码器 self.encoder = nn.Sequential( nn.Conv2d(4, 64, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), ) # 解码器 self.decoder = nn.Sequential( nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1), nn.Sigmoid(), ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x 要怎么改
根据报错信息可以看到,预训练模型中缺少了一些键对应的值,这些键是`self.encoder`中的权重和偏置参数。因此,我们需要在模型的`__init__`方法中对`self.encoder`的权重和偏置进行初始化,这样就可以让预训练模型的键和模型的键对应上。
具体来说,可以在`__init__`方法中添加如下代码:
```
self.encoder[0].weight = nn.Parameter(torch.zeros_like(self.encoder[0].weight))
self.encoder[0].bias = nn.Parameter(torch.zeros_like(self.encoder[0].bias))
self.encoder[2].weight = nn.Parameter(torch.zeros_like(self.encoder[2].weight))
self.encoder[2].bias = nn.Parameter(torch.zeros_like(self.encoder[2].bias))
self.encoder[3].weight = nn.Parameter(torch.zeros_like(self.encoder[3].weight))
self.encoder[3].bias = nn.Parameter(torch.zeros_like(self.encoder[3].bias))
self.encoder[5].weight = nn.Parameter(torch.zeros_like(self.encoder[5].weight))
self.encoder[5].bias = nn.Parameter(torch.zeros_like(self.encoder[5].bias))
self.encoder[6].weight = nn.Parameter(torch.zeros_like(self.encoder[6].weight))
self.encoder[6].bias = nn.Parameter(torch.zeros_like(self.encoder[6].bias))
self.encoder[6].running_mean = nn.Parameter(torch.zeros_like(self.encoder[6].running_mean))
self.encoder[6].running_var = nn.Parameter(torch.zeros_like(self.encoder[6].running_var))
```
这段代码中,我们对`self.encoder`的前7个卷积层的权重和偏置进行了初始化,并对第7个卷积层的`running_mean`和`running_var`也进行了初始化。这样,在加载预训练模型时,就可以正确地对应到模型的键,避免了报错。
阅读全文