建立基坐标系,坐标轴分别是X1、Y1、Z1,X1正方向向右,Y1正方向向前,Z1正方向向上,建立工具坐标系,坐标轴分别是X2、Y2、Z2,Y2与基坐标系Z1轴平行,X2正方向朝向基坐标系原点,Z2方向遵守右手定则,当基坐标系分别绕其坐标轴旋转,求工具坐标系的变化,用matlab表示

时间: 2023-09-26 08:15:08 浏览: 119
假设基坐标系初始状态为标准正交坐标系,即: ``` X1 = [1 0 0]; Y1 = [0 1 0]; Z1 = [0 0 1]; ``` 工具坐标系初始状态也为标准正交坐标系,即: ``` X2 = [1 0 0]; Y2 = [0 1 0]; Z2 = [0 0 1]; ``` 假设基坐标系在X1轴旋转了angle1度,在Y1轴旋转了angle2度,在Z1轴旋转了angle3度,则基坐标系的旋转矩阵为: ``` R1 = [cosd(angle2)*cosd(angle3) -cosd(angle2)*sind(angle3) sind(angle2) ; ... cosd(angle1)*sind(angle3)+sind(angle1)*sind(angle2)*cosd(angle3) cosd(angle1)*cosd(angle3)-sind(angle1)*sind(angle2)*sind(angle3) -sind(angle1)*cosd(angle2) ; ... sind(angle1)*sind(angle3)-cosd(angle1)*sind(angle2)*cosd(angle3) sind(angle1)*cosd(angle3)+cosd(angle1)*sind(angle2)*sind(angle3) cosd(angle1)*cosd(angle2)]; ``` 假设工具坐标系相对于基坐标系沿X1轴平移了dx1,沿Y1轴平移了dy1,沿Z1轴平移了dz1,则工具坐标系的平移矩阵为: ``` T = [1 0 0 dx1 ; ... 0 1 0 dy1 ; ... 0 0 1 dz1 ; ... 0 0 0 1]; ``` 假设工具坐标系在X2轴旋转了angle4度,在Z2轴旋转了angle5度,则工具坐标系的旋转矩阵为: ``` R2 = [cosd(angle5) -sind(angle5) 0 ; ... sind(angle4)*sind(angle5) cosd(angle4)*cosd(angle5) -sind(angle4) ; ... -cosd(angle4)*sind(angle5) sind(angle4)*cosd(angle5) cosd(angle4)]; ``` 则工具坐标系相对于基坐标系的变化矩阵为: ``` T*R2*[X2' ; Y2' ; Z2' ; 0 0 0 1]*R1 ``` 其中,`[X2' ; Y2' ; Z2' ; 0 0 0 1]`是工具坐标系相对于自身的变化矩阵。完整的matlab代码如下: ``` % 建立基坐标系 X1 = [1 0 0]; Y1 = [0 1 0]; Z1 = [0 0 1]; % 建立工具坐标系 X2 = [1 0 0]; Y2 = [0 1 0]; Z2 = [0 0 1]; % 基坐标系旋转角度 angle1 = 30; % 绕X1轴旋转30度 angle2 = 45; % 绕Y1轴旋转45度 angle3 = 60; % 绕Z1轴旋转60度 % 工具坐标系平移距离 dx1 = 1; % 沿X1轴平移1个单位 dy1 = 2; % 沿Y1轴平移2个单位 dz1 = 3; % 沿Z1轴平移3个单位 % 工具坐标系旋转角度 angle4 = 75; % 绕X2轴旋转75度 angle5 = 90; % 绕Z2轴旋转90度 % 基坐标系旋转矩阵 R1 = [cosd(angle2)*cosd(angle3) -cosd(angle2)*sind(angle3) sind(angle2) ; ... cosd(angle1)*sind(angle3)+sind(angle1)*sind(angle2)*cosd(angle3) cosd(angle1)*cosd(angle3)-sind(angle1)*sind(angle2)*sind(angle3) -sind(angle1)*cosd(angle2) ; ... sind(angle1)*sind(angle3)-cosd(angle1)*sind(angle2)*cosd(angle3) sind(angle1)*cosd(angle3)+cosd(angle1)*sind(angle2)*sind(angle3) cosd(angle1)*cosd(angle2)]; % 工具坐标系平移矩阵 T = [1 0 0 dx1 ; ... 0 1 0 dy1 ; ... 0 0 1 dz1 ; ... 0 0 0 1]; % 工具坐标系旋转矩阵 R2 = [cosd(angle5) -sind(angle5) 0 ; ... sind(angle4)*sind(angle5) cosd(angle4)*cosd(angle5) -sind(angle4) ; ... -cosd(angle4)*sind(angle5) sind(angle4)*cosd(angle5) cosd(angle4)]; % 工具坐标系相对于基坐标系的变化矩阵 T*R2*[X2' ; Y2' ; Z2' ; 0 0 0 1]*R1 ```
阅读全文

相关推荐

x1=XL(:,5)-XL(:,3); %建立靶标坐标系,求出x方向向量 y0=XL(:,2)-XL(:,3); z1=cross(x1,y0); %求出z方向向量 y1=cross(z1,x1); %求出y方向向量 x2=x1/(sqrt(x1(1)^2+x1(2)^2+x1(3)^2)); %转换为单位向量 y2=y1/(sqrt(y1(1)^2+y1(2)^2+y1(3)^2)); z2=z1/(sqrt(z1(1)^2+z1(2)^2+z1(3)^2)); Pt2=[0;0;0]; %靶标坐标系下点的坐标,先都设为0 Pt3=[0;0;0]; Pt1=[0;0;0]; Pt4=[0;0;0]; Pt5=[0;0;0]; Pt5(1)=sqrt((XL(1,3)-XL(1,5))^2+(XL(2,3)-XL(2,5))^2+(XL(3,3)-XL(3,5))^2); %靶标坐标系下,点5在x轴上,x3为原点,因此只需求出点3与点5间的距离,就可得点5坐标 planD=-1*(z2(1)*XL(1,3)+z2(2)*XL(2,3)+z2(3)*XL(3,3)); %Ax+By+Cz+D=0 靶标平面,法向量即z2 distance4=z2(1)*XL(1,4)+z2(2)*XL(2,4)+z2(3)*XL(3,4)+planD; %点4到xy平面距离 即点 4 的z方向坐标 distance1=z2(1)*XL(1,1)+z2(2)*XL(2,1)+z2(3)*XL(3,1)+planD; %点1到xy平面距离 distance6=z2(1)*XL6(1)+z2(2)*XL6(2)+z2(3)*XL6(3)+planD; Pt1t=-(planD+z2(1)*XL(1,1)+z2(2)*XL(2,1)+z2(3)*XL(3,1)); Pt1o=[XL(1,1)+z2(1)*Pt1t,XL(2,1)+z2(2)*Pt1t,XL(3,1)+z2(3)*Pt1t]; %将点1投影到xy平面后的坐标 Pt4t=-(planD+z2(1)*XL(1,4)+z2(2)*XL(2,4)+z2(3)*XL(3,4)); Pt4o=[XL(1,4)+z2(1)*Pt4t,XL(2,4)+z2(2)*Pt4t,XL(3,4)+z2(3)*Pt4t]; %将点4投影到xy平面后的坐标,此处先将点1 4 投影到xy平面,在分别求其到x轴 y轴的距离,即得点1 4靶标坐标系下坐标 Pt6t=-(planD+z2(1)*XL6(1)+z2(2)*XL6(2)+z2(3)*XL6(3)); Pt6o=[XL6(1)+z2(1)Pt6t,XL6(2)+z2(2)Pt6t,XL6(3)+z2(3)Pt6t]; p1p3=[Pt1o(1)-XL(1,3);Pt1o(2)-XL(2,3);Pt1o(3)-XL(3,3)]; %通过点到直线距离公式,求出点1的x,y 坐标 Pt1(2)=norm(cross(p1p3,x2)); %??? Pt1(1)=norm(cross(p1p3,y2)); Pt1(3)=distance1; p4p3=[Pt4o(1)-XL(1,3);Pt4o(2)-XL(2,3);Pt4o(3)-XL(3,3)]; %通过点到直线距离公式,求出点4的x,y 坐标 Pt4(2)=norm(cross(p4p3,x2)); Pt4(1)=norm(cross(p4p3,y2)); Pt4(3)=distance4; p6p3=[Pt6o(1)-XL(1,3);Pt6o(2)-XL(2,3);Pt6o(3)-XL(3,3)]; %通过点到直线距离公式,求出点6的x,y 坐标 Pt6(2)=norm(cross(p6p3,x2)); Pt6(1)=norm(cross(p6p3,y2)); Pt6(3)=distance6; p2p3=[XL(1,2)-XL(1,3);XL(2,2)-XL(2,3);XL(3,2)-XL(3,3)]; %通过点到直线距离公式,求出点2的x,y 坐标 Pt2(2)=norm(cross(p2p3,x2)); Pt2(1)=norm(cross(p2p3,y2)); TargetPoint(:,1)=Pt1; TargetPoint(:,2)=Pt2; TargetPoint(:,3)=Pt3; TargetPoint(:,4)=Pt4; TargetPoint(:,5)=Pt5; TargetPoint(:,6)=Pt6; R(:,1)=x2; R(:,2)=y2; R(:,3)=z2; T=XL(:,3); for i=1:6 TargetPointWorld(:,i)=RTargetPoint(:,i)+T; end figure, plot3(TargetPoint(1,1:5),TargetPoint(2,1:5),TargetPoint(3,1:5),'r'); % axis ([0 150 0 150 0 150]); hold on; plot3(TargetPoint(1,6),TargetPoint(2,6),TargetPoint(3,6),'b'); hold off; save(filenamesave,'TargetPoint','TargetPointWorld','R','T'); 优化该代码

大家在看

recommend-type

chessClock:一个简单的Arduino Chess Clock,带有3个按钮和LCD 240X320屏幕

弗洛伊斯国际象棋时钟 一个带有3个按钮和240X320 LCD屏幕的简单Arduino国际象棋时钟 这是隔离期间开发的一个简单的棋钟项目。主要灵感来自@naldin的 。我更改了他的代码,所以我只能使用三个按钮(暂停,黑白)来选择国际象棋比赛中最常用的时间设置,并在LCD屏幕上显示小时数。该项目目前处于停滞状态,因为我使用的Arduino Nano已损坏,我找不到新的。尽管项目运行正常,但您只需要正确地将LCD屏幕连接到相应的SPI引脚,并将按钮连接到所需的任何数字引脚即可。另外,我仍然需要在时钟上打印3D框或找到一个3D框使其播放。很快,我将更新此页面。
recommend-type

学堂云《信息检索与科技写作》单元测试考核答案

学堂云《信息检索与科技写作》单元测试考核答案 【对应博文见链接:】https://blog.csdn.net/m0_61712829/article/details/135173767?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22135173767%22%2C%22source%22%3A%22m0_61712829%22%7D
recommend-type

【蒙特卡洛模拟】这个项目旨在通过强化学习和蒙特卡洛模拟的结合,解决银行购买股票的最优策略和预期利润折现率的问题KL.zip

【蒙特卡洛模拟】这个项目旨在通过强化学习和蒙特卡洛模拟的结合,解决银行购买股票的最优策略和预期利润折现率的问题【KL】.zip
recommend-type

码垛机器人说明书

对于随机货盘来说,码垛机器人是唯一的选择。尽管如此,机器人装载也面临比较多的问题,如果要以较高的速度进行生产,将更加困难重重。一个处理随机装载的机器人码垛机需要特殊的软件,通过软件,机器人码垛机与生产线的其他部分相连接,这是个巨大的进步。
recommend-type

《智能调度集中系统暂行技术条件》.pdf

智能调度

最新推荐

recommend-type

Python中三维坐标空间绘制的实现

ax.plot3D(x1, y1, z1, 'g--') ax.plot3D([0,18,0],[5,18,10],[0,5,0],'om-') plt.show() ``` 在这个例子中,我们创建了两条空间曲线,一条实线和一条虚线,并绘制了一个带有标记的折线。 3. **绘制面**: ...
recommend-type

基于OpenCV的人脸识别小程序.zip

【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单
recommend-type

OxyPlot CategoryAxis

在OxyPlot中,CategoryAxis用于创建一个基于类别标签的轴,通常用于折线图或柱状图,其中每个轴的值代表不同的类别。以下是如何在XAML中设置和使用CategoryAxis的一个简单示例: ```xml <!-- 在你的XAML文件中 --> <oxy:CartesianChart x:Name="chart"> <oxy:CartesianChart.Axes> <oxy:CategoryAxis Title="Category" Position="Bottom"> <!-- 可以在这里添加类别标签 -->