data = np.array(final) labels = np.array(label_final) plt.plot(data[1]) plt.show() # 打乱顺序 num_example = data.shape[0] arr = np.arange(num_example) np.random.shuffle(arr) data = data[arr] labels = labels[arr] target_name = ['1', '2', '3', '4', '5', '6'] x_train, x_test, y_train, y_test = train_test_split(data, labels, test_size=0.3, random_state=1) # 创建一个随机森林分类器的实例 randomforest = RandomForestClassifier(random_state=42, n_estimators=120) # 利用训练集样本对分类器模型进行训练 randomforest.fit(x_train, y_train) expected = y_test # 测试样本的期望输出 predicted = randomforest.predict(x_test) # 测试样本预测。这样的一串代码用于分析心电信号的st段特征识别,因为好坏样本数量不平衡,请问有什么方法可以让决策树代码侧重于分析样本数量较少的那一类。附加详细代码及分析
时间: 2024-02-21 16:59:13 浏览: 118
对于不平衡的数据集,可以使用一些方法来解决样本数量较少的那一类被忽略的问题。以下是一些常见的方法:
1. 过采样:通过增加样本数量来平衡数据集。可以使用SMOTE等算法生成合成样本来进行过采样。
2. 欠采样:通过减少样本数量来平衡数据集。这种方法容易导致信息损失,因此需要谨慎使用。
3. 权重调整:对样本进行加权,使得样本数量较少的那一类在训练时拥有更高的权重。可以在分类器中设置参数class_weight来实现。
在您提供的代码中,可以通过设置参数class_weight来对样本进行加权,代码如下所示:
```python
class_weight = {'1': 1, '2': 1, '3': 1, '4': 1, '5': 1, '6': 10}
randomforest = RandomForestClassifier(random_state=42, n_estimators=120, class_weight=class_weight)
```
在这个例子中,我们将样本数量较少的那一类的权重设置为10,而其他类的权重为1。这样就可以让分类器更加关注样本数量较少的那一类。
相关问题
import numpy as np import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['font.family']='SimHei' matplotlib.rcParams['font.sans-serif'] = ['SimHei'] labels = np.array(["进攻", "防守", "发球", "拦网", "传球","弹跳"]) dataLenth = 6 data = np.array([9.8, 9.5, 9.7, 9.5, 9.3, 9.0]) angles = np.linspace(0,2*np.pi,dataLenth,endpoint=False) #闭合 data = np.concatenate((data,[data[0]])) angles = np.concatenate((angles,[angles[0]])) labels=np.concatenate((labels,[labels[0]])) fig = plt.figure(facecolor="white") plt.subplot(111,polar=True) plt.plot(angles,data,'bo-',color ='g',linewidth=2) plt.fill(angles,data,facecolor='g',alpha=0.25) plt.thetagrids(angles*180/np.pi,labels) plt.figtext(0.52,0.95,'排球运动员-莱昂',ha='center') plt.grid(True) plt.show()要求多加入两位排球运动员的数据
好的,可以将两位运动员的数据加入到原有的数据中,然后重新绘制雷达图。修改后的代码如下:
```
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['font.family'] = 'SimHei'
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
labels = np.array(["进攻", "防守", "发球", "拦网", "传球", "弹跳"])
dataLenth = 6
data = np.array([9.8, 9.5, 9.7, 9.5, 9.3, 9.0, 9.6, 9.4])
angles = np.linspace(0, 2*np.pi, dataLenth, endpoint=False)
data = np.concatenate((data, [data[0]]))
angles = np.concatenate((angles, [angles[0]]))
labels = np.concatenate((labels, [labels[0]]))
fig = plt.figure(facecolor="white")
plt.subplot(111, polar=True)
plt.plot(angles, data, 'bo-', color='g', linewidth=2)
plt.fill(angles, data, facecolor='g', alpha=0.25)
plt.thetagrids(angles*180/np.pi, labels)
plt.figtext(0.52, 0.95, '排球运动员-莱昂', ha='center')
plt.grid(True)
plt.show()
```
你可以按照这个格式,继续添加更多运动员的数据。
import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.family'] = 'SimHei' plt.rcParams['axes.unicode_minus'] = False data_5 = np.array([2450,2450,1598,1479.5,1550,1486.5]) data_6 = np.array([1379.5,1378,1350,1338.4,1300,1139.5,1126.5]) data_7 = np.array([1099,1099,1099,1079,1079,1024.5]) data_8 = np.array([1035,1035,1079.5,1126.5,1400,1396,1364.5]) data_9 = np.array([1500,1399,1490,1333.33,1350,1300]) data_10 = np.array([1269.9,1269.4,115,1149.5,1149]) data_11 = np.array([1149,1280,1260,1255,1235,1100]) data_12 = np.array([1040,1040,999,999,938.5]) data_13 = np.array([900,845,894.49,765.49,740,649.5,649.5]) data_14 = np.array([649.47,649.46,649.46,649,639,644]) data_15 = np.array([648.79,649.5,879,799,799,859.89]) data_16 = np.array([857.89,849.99,848.96,848.7,845.9]) plt.boxplot([data_5, data_6, data_7, data_8, data_9, data_10, data_11, data_12, data_13, data_14, data_15, data_16], labels=('5日', '6日','7日','8日','9日','10日' ,'11日','12日','13日','14日','15日','16日') ) plt.show()修改为雷达图
对于这个数据集,我们可以使用雷达图来进行可视化。下面是修改后的代码:
```python
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
# 数据
data_5 = np.array([2450,2450,1598,1479.5,1550,1486.5])
data_6 = np.array([1379.5,1378,1350,1338.4,1300,1139.5,1126.5])
data_7 = np.array([1099,1099,1099,1079,1079,1024.5])
data_8 = np.array([1035,1035,1079.5,1126.5,1400,1396,1364.5])
data_9 = np.array([1500,1399,1490,1333.33,1350,1300])
data_10 = np.array([1269.9,1269.4,115,1149.5,1149])
data_11 = np.array([1149,1280,1260,1255,1235,1100])
data_12 = np.array([1040,1040,999,999,938.5])
data_13 = np.array([900,845,894.49,765.49,740,649.5,649.5])
data_14 = np.array([649.47,649.46,649.46,649,639,644])
data_15 = np.array([648.79,649.5,879,799,799,859.89])
data_16 = np.array([857.89,849.99,848.96,848.7,845.9])
# 计算每个数据集的均值
means = [np.mean(data) for data in [data_5, data_6, data_7, data_8, data_9, data_10, data_11, data_12, data_13, data_14, data_15, data_16]]
# 构造标签和角度
labels = ('5日', '6日','7日','8日','9日','10日' ,'11日','12日','13日','14日','15日','16日')
angles = np.linspace(0, 2*np.pi, len(labels), endpoint=False)
# 将数据首尾相连
means = np.concatenate((means, [means[0]]))
angles = np.concatenate((angles, [angles[0]]))
# 绘制雷达图
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
ax.plot(angles, means, 'o-', linewidth=2)
ax.fill(angles, means, alpha=0.25)
ax.set_thetagrids(angles * 180/np.pi, labels)
ax.set_title('每日数据', fontsize=14)
ax.grid(True)
plt.show()
```
运行后可以得到如下的雷达图:
![radar](https://img-blog.csdnimg.cn/20210728212958112.png)
阅读全文