x1=np.array([1,5,6,3,-1]) x2=np.arange(12).reshape(3,4) 利用Numpy求向量和矩阵的1,2范数,并说明其含义。
时间: 2023-05-18 14:03:13 浏览: 88
探索 NumPy 的维度变换:np.newaxis 与 reshape 的奥秘
向量的1范数是指向量中所有元素的绝对值之和,即 ||x||1 = |x1| + |x2| + ... + |xn|。在本题中,x1的1范数为 1+5+6+3+1=16。
向量的2范数是指向量中所有元素的平方和的平方根,即 ||x||2 = sqrt(x1^2 + x2^2 + ... + xn^2)。在本题中,x1的2范数为 sqrt(1^2 + 5^2 + 6^2 + 3^2 + (-1)^2) ≈ 8.6。
矩阵的1范数是指矩阵中所有列向量的1范数的最大值,即 ||A||1 = max{ ||a1||1, ||a2||1, ..., ||an||1 },其中a1, a2, ..., an是矩阵A的列向量。在本题中,x2的1范数为 max{ |0|+|4|+|8|, |1|+|5|+|9|, |2|+|6|+|10|, |3|+|7|+|11| } = 18。
矩阵的2范数是指矩阵的最大奇异值,即矩阵A的所有特征值的平方和的平方根,即 ||A||2 = sqrt(λ1^2 + λ2^2 + ... + λn^2),其中λ1, λ2, ..., λn是矩阵A的特征值。在本题中,x2的2范数为最大奇异值,需要通过SVD分解求解。
阅读全文