判别分析逐步判别 C++代码
时间: 2024-05-06 16:17:22 浏览: 53
C++源代码的一些分析
4星 · 用户满意度95%
以下是一个简单的C++实现逐步判别分析的代码示例:
```c++
#include <iostream>
#include <vector>
using namespace std;
// 定义一个结构体来存储样本数据
struct Sample {
vector<double> features; // 样本特征
int label; // 样本标签
};
// 定义一个函数来计算样本的平均值
double calc_mean(vector<double>& samples) {
double sum = 0.0;
for (int i = 0; i < samples.size(); i++) {
sum += samples[i];
}
return sum / samples.size();
}
// 定义一个函数来计算样本的方差
double calc_variance(vector<double>& samples, double mean) {
double sum = 0.0;
for (int i = 0; i < samples.size(); i++) {
sum += pow(samples[i] - mean, 2);
}
return sum / (samples.size() - 1);
}
// 定义一个函数来计算样本之间的距离
double calc_distance(vector<double>& sample1, vector<double>& sample2) {
double sum = 0.0;
for (int i = 0; i < sample1.size(); i++) {
sum += pow(sample1[i] - sample2[i], 2);
}
return sqrt(sum);
}
// 定义逐步判别分析函数
vector<double> stepwise_discriminant_analysis(vector<Sample>& samples) {
int n_features = samples[0].features.size(); // 特征数
int n_samples = samples.size(); // 样本数
vector<double> means(n_features, 0.0); // 平均值向量
vector<vector<double>> covariances(n_features, vector<double>(n_features, 0.0)); // 协方差矩阵
vector<double> weights(n_features, 0.0); // 权重向量
// 初始化均值向量和协方差矩阵
for (int i = 0; i < n_features; i++) {
vector<double> feature_samples;
for (int j = 0; j < n_samples; j++) {
feature_samples.push_back(samples[j].features[i]);
}
means[i] = calc_mean(feature_samples);
covariances[i][i] = calc_variance(feature_samples, means[i]);
}
// 开始迭代计算权重向量
for (int i = 0; i < n_features; i++) {
double max_delta = 0.0;
int max_feature_index = 0;
// 对于每个特征,计算它的增益并记录最大增益
for (int j = 0; j < n_features; j++) {
if (weights[j] != 0.0) continue; // 如果该特征已经被选中,则跳过
double delta = 0.0;
for (int k = 0; k < n_samples; k++) {
vector<double> sample1 = samples[k].features;
sample1.erase(sample1.begin() + j); // 去掉当前特征
double min_distance = 1e9;
for (int l = 0; l < n_samples; l++) {
if (samples[l].label != samples[k].label) continue;
vector<double> sample2 = samples[l].features;
sample2.erase(sample2.begin() + j); // 去掉当前特征
double distance = calc_distance(sample1, sample2);
if (distance < min_distance) {
min_distance = distance;
}
}
delta += min_distance;
}
// 记录最大增益
if (delta > max_delta) {
max_delta = delta;
max_feature_index = j;
}
}
// 更新权重向量
weights[max_feature_index] = 1.0;
for (int j = 0; j < n_features; j++) {
if (j == max_feature_index) continue;
if (weights[j] == 0.0) continue;
double w1 = weights[j];
double w2 = covariances[max_feature_index][max_feature_index] / covariances[j][j];
double r = covariances[max_feature_index][j] / sqrt(covariances[max_feature_index][max_feature_index] * covariances[j][j]);
double delta_w = (w1 + w2 * r) / (1 - pow(r, 2));
weights[j] = delta_w;
}
}
return weights;
}
int main() {
vector<Sample> samples = {
{{1.0, 2.0, 3.0}, 0},
{{2.0, 3.0, 4.0}, 0},
{{3.0, 4.0, 5.0}, 0},
{{5.0, 6.0, 7.0}, 1},
{{6.0, 7.0, 8.0}, 1},
{{7.0, 8.0, 9.0}, 1}
};
vector<double> weights = stepwise_discriminant_analysis(samples);
// 输出权重向量
for (int i = 0; i < weights.size(); i++) {
cout << "w" << i << " = " << weights[i] << endl;
}
return 0;
}
```
这段代码实现了一个简单的逐步判别分析算法,用于计算样本数据中每个特征的权重。在这个例子中,我们使用了一个包含6个样本的数据集,每个样本有3个特征和一个标签。我们首先计算每个特征的平均值和方差,并初始化协方差矩阵。然后,我们开始迭代计算权重向量。对于每个特征,我们计算它的增益并记录最大增益,然后更新权重向量。在更新权重向量时,我们使用了上一次迭代中已经选中的特征来计算新的权重。最终,我们得到了一个包含3个元素的权重向量,用于表示每个特征的重要性。
阅读全文