int main(void) { int16_t ax[5], ay[5], az; int i; float vx = 0, ay_sum = 0, r, a, t = 0.1; // 初始化MPU6050 MPU6050_Init(); while (1) { // 读取加速度和陀螺仪数据 for (i = 0; i < 5; i++) { MPU6050_Read_Accel(&ax[i], &ay[i], &az); HAL_Delay(2); // 等待2ms再进行下一次采样 } // 对ax和ay进行中值滤波 ax[2] = Median_Filter(ax, 5); ay[2] = Median_Filter(ay, 5); // 对ax进行时间积分 for (i = 0; i < 20; i++) { vx += ax[2] * 0.005; // 时间积分,假设采样间隔为0.005s } // 对ay进行平均处理 ay_sum = 0; for (i = 0; i < 20; i++) { ay_sum += ay[2]; HAL_Delay(2); // 等待2ms再进行下一次采样 } ay_sum /= 20; // 计算r r = vx * vx / ay_sum; // 计算a a = ay_sum - 2 * sqrt(1 - cos(vx*t/r)) * (vx/t); // 向PC输出a和滤波后的ax值 printf("a = %f, ax = %d\r\n", a, ax[2]); HAL_Delay(10); } } int Median_Filter(int16_t *data, int len) { int i, j; int16_t temp; // 冒泡排序 for (i = 0; i < len - 1; i++) { for (j = 0; j < len - i - 1; j++) { if (data[j] > data[j + 1]) { temp = data[j]; data[j] = data[j + 1]; data[j + 1] = temp; } } } // 取中值 if (len % 2 == 0) { return (data[len / 2] + data[len / 2 - 1]) / 2; } else { return data[len / 2]; } }修改程序把每次滤波的数据改为5个

时间: 2023-07-15 15:13:47 浏览: 47
好的,以下是修改后的程序: ```c int main(void) { int16_t ax[5], ay[5], az; int i; float vx = 0, ay_sum = 0, r, a, t = 0.1; // 初始化MPU6050 MPU6050_Init(); while (1) { // 读取加速度和陀螺仪数据 for (i = 0; i < 5; i++) { MPU6050_Read_Accel(&ax[i], &ay[i], &az); HAL_Delay(2); // 等待2ms再进行下一次采样 } // 对ax和ay进行中值滤波 ax[2] = Median_Filter(ax, 5); ay[2] = Median_Filter(ay, 5); // 对ax进行时间积分 for (i = 0; i < 20; i++) { vx += ax[2] * 0.005; // 时间积分,假设采样间隔为0.005s } // 对ay进行平均处理 ay_sum = 0; for (i = 0; i < 5; i++) { // 改为每次处理5个数据 ay_sum += ay[i]; HAL_Delay(2); // 等待2ms再进行下一次采样 } ay_sum /= 5; // 平均处理 // 计算r r = vx * vx / ay_sum; // 计算a a = ay_sum - 2 * sqrt(1 - cos(vx*t/r)) * (vx/t); // 向PC输出a和滤波后的ax值 printf("a = %f, ax = %d\r\n", a, ax[2]); HAL_Delay(10); } } int Median_Filter(int16_t *data, int len) { int i, j; int16_t temp; // 冒泡排序 for (i = 0; i < len - 1; i++) { for (j = 0; j < len - i - 1; j++) { if (data[j] > data[j + 1]) { temp = data[j]; data[j] = data[j + 1]; data[j + 1] = temp; } } } // 取中值 if (len % 2 == 0) { return (data[len / 2] + data[len / 2 - 1]) / 2; } else { return data[len / 2]; } } ```

相关推荐

最新推荐

recommend-type

浅谈int8_t int64_t size_t ssize_t的相关问题(详解)

在编程中,我们经常会遇到各种类型的整数,其中`int8_t`、`int64_t`、`size_t`和`ssize_t`是C++和C语言中用于特定目的的类型别名。这些类型通常在`stdint.h`和`sys/types.h`头文件中定义,旨在提供跨平台的兼容性和...
recommend-type

Keil MDK-ARM各种数据类型占用的字节数 char short int float double

5. **float**: 单精度浮点数`float`占用4个字节,遵循IEEE 754标准,能够表示大约6-7位有效数字的数值。 6. **double**: 双精度浮点数`double`占用8个字节,提供更高的精度,可以表示大约15位有效数字的数值。 在...
recommend-type

C语言中int到float的强制类型转换

C语言中int到float的强制类型转换 在C语言中,强制类型转换是非常常见的操作之一,而int到float的强制类型转换则是其中一种非常重要的类型转换。在项目中经常会遇到需要将int类型的数据转换为float类型的情况,这...
recommend-type

C++中int类型按字节打印输出的方法

int main(){ int i = 128; cout (int) ; unsigned char* cc = (unsigned char*)&i; for (int j = 0; j ; j++) printf("cc: %p \t *cc: %x\n", cc + j, *(cc + j)); system("pause"); return 0; } ``` 输出...
recommend-type

使用Java代码将IP地址转换为int类型的方法

for (int i = 0; i ; i++) { int part = Integer.parseInt(parts[i]); if (part &lt; 0 || part &gt; 255) { throw new IllegalArgumentException("Invalid IP segment"); } result |= (part (24 - i * 8)); } ...
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。