用akshare,gym,pytorch写股票强化学习代码
时间: 2024-02-09 07:10:32 浏览: 105
强化学习炒股Pytorch版
这是一个相对复杂的任务,需要结合多个库和算法来完成。这里提供一个简单的示例代码,用于说明如何使用akshare、gym和pytorch实现股票强化学习。
首先,我们需要从akshare中获取股票数据。这里以获取上证指数的历史数据为例:
```python
import akshare as ak
stock_df = ak.stock_zh_index_daily(symbol="sh000001", start_date="20100101")
```
接下来,我们可以使用gym创建一个强化学习环境。这里以gym的经典环境CartPole为例:
```python
import gym
env = gym.make('CartPole-v0')
```
然后,我们可以使用pytorch来构建和训练强化学习模型。这里以DQN算法为例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import random
from collections import deque
class DQN(nn.Module):
def __init__(self):
super(DQN, self).__init__()
self.fc1 = nn.Linear(4, 64)
self.fc2 = nn.Linear(64, 2)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class ReplayMemory(object):
def __init__(self, capacity):
self.capacity = capacity
self.memory = deque(maxlen=capacity)
def push(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def sample(self, batch_size):
batch = random.sample(self.memory, batch_size)
state, action, reward, next_state, done = map(torch.stack, zip(*batch))
return state, action.squeeze(), reward.squeeze(), next_state, done.squeeze()
def __len__(self):
return len(self.memory)
BATCH_SIZE = 32
GAMMA = 0.99
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 200
TARGET_UPDATE = 10
policy_net = DQN()
target_net = DQN()
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()
optimizer = optim.RMSprop(policy_net.parameters())
memory = ReplayMemory(10000)
steps_done = 0
def select_action(state):
global steps_done
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * steps_done / EPS_DECAY)
steps_done += 1
if sample > eps_threshold:
with torch.no_grad():
return policy_net(state).max(1)[1].view(1, 1)
else:
return torch.tensor([[random.randrange(2)]], device=device, dtype=torch.long)
episode_durations = []
def optimize_model():
if len(memory) < BATCH_SIZE:
return
state, action, reward, next_state, done = memory.sample(BATCH_SIZE)
action_tensor = torch.tensor(action, device=device).unsqueeze(1)
reward_tensor = torch.tensor(reward, device=device)
done_tensor = torch.tensor(done, device=device)
state_batch = torch.cat(state)
next_state_batch = torch.cat(next_state)
q_values = policy_net(state_batch).gather(1, action_tensor)
next_q_values = target_net(next_state_batch).max(1)[0].detach()
expected_q_values = (next_q_values * GAMMA) + reward_tensor
loss = F.smooth_l1_loss(q_values, expected_q_values.unsqueeze(1))
optimizer.zero_grad()
loss.backward()
for param in policy_net.parameters():
param.grad.data.clamp_(-1, 1)
optimizer.step()
for i_episode in range(100):
state = env.reset()
for t in range(100):
action = select_action(state)
next_state, reward, done, _ = env.step(action.item())
reward = torch.tensor([reward], device=device)
memory.push(torch.tensor([state], device=device), action, reward, torch.tensor([next_state], device=device), torch.tensor([done], device=device))
state = next_state
optimize_model()
if done:
episode_durations.append(t + 1)
break
if i_episode % TARGET_UPDATE == 0:
target_net.load_state_dict(policy_net.state_dict())
```
这个示例代码使用DQN算法来训练一个强化学习模型,使用CartPole环境进行测试。在实际应用中,需要根据具体情况进行修改和调整。
阅读全文