#2012-2013年犯罪未遂数量折线图 import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus']=False #数据收集 x=np.arange(2012,2024) y1=np.array([20,39,855,1078,802,696,728,681,735,668,86,1]) y2=np.array([15,18,399,601,371,325,285,175,134,26,1,0]) #绘制折线图 plt.plot(x,y1) plt.plot(x,y2) plt.title("2012-2023年云南省及昆明市刑事案件犯罪未遂数量折线图") #坐标轴 plt.xlabel("时间") plt.ylabel("数量") #网格 plt.grid(linewidth=0.3) #图例 lines=plt.plot(x,y1,x,y2) plt.legend(lines,['云南省','昆明市'],shadow=True) #参考线(平均值) plt.axhline(y=532,linestyle="--",color="red") #指向性注释文本 plt.annotate("最大值", # 注释的标签内容 xy=(2015,1078), # 要被注释的地方位置坐标 xytext=(2016,1100), # 注释文本的位置 weight="bold", # 注释文本字体粗细 color='g', arrowprops= dict(arrowstyle='->', connectionstyle='arc3, rad=0.2', color='g') # 指向注释点的箭头属性 ) #数据标记 plt.plot([2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023],[3,39,855,1078,802,696,728,681,735,668,86,1],marker='o') plt.plot([2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023],[15,18,399,601,371,325,285,175,134,26,1,0],marker='o') plt.show() 为什么图形和图例颜色不同

时间: 2023-09-19 08:05:55 浏览: 143
在这个修改后的代码中,绘制两个折线图时分别使用了不同的 `plt.plot()` 指定了线条样式的颜色,因此第一个折线图和图例的颜色是蓝色,第二个折线图和图例的颜色是橙色。同时,在 `plt.legend()` 中指定了每个标签对应的颜色,使得图例颜色和折线图颜色对应。因此,图形和图例颜色不同是因为它们对应的颜色不同。
相关问题

这段代码中是否有错误import time import numpy as np import xlrd import matplotlib.pyplot as plt import pyecharts.options as opts from pyecharts.charts import Line import datetime for j in range(0,5): # 获取文件并读取数据 data = xlrd.open_workbook_xls('歌手热门前十歌曲基本信息.xls') table = data.sheets()[j] geshou = table.row_values(0)[0] names1 = [] # 歌曲名 times = [] # 发布时间 for i in range(7, 17): name = table.row_values(i)[0] # time1 = time.strptime(table.row_values(i)[3],"%y %b %d") time1 = int(table.row_values(i)[3].replace("-", "")) #print(time1) names1.append(name) times.append(time1) # print(names1) # print(times) # print(geshou) # 定义画布大小 # fig = plt.figure(figsize=(5,8)) plt.rcParams["font.sans-serif"] = "SimHei" # 解决中文乱码 # 将格式转为flot浮点型 # 画线 plt.plot(names1, times, label='歌曲发布时间', marker='D', color='green') # X、Y轴刻度标签 plt.xlabel('发布时间') plt.ylabel('歌曲名') plt.xticks(rotation=45) # 图表题 plt.title('歌手<'+geshou+'>歌曲发布时间图') # 折现说明 plt.legend() plt.show()

这段代码中没有明显的语法错误,但是可能存在以下问题: 1. pyecharts 依赖库需要单独安装,如果没有安装会导致代码运行出错。可以在命令行中使用 pip install pyecharts 安装。 2. 循环变量 j 没有在代码中使用,可能是多余的。 3. 画线时,X轴和Y轴的标签可能颠倒了,应该将 `plt.xlabel('发布时间')` 改为 `plt.xlabel('歌曲名')`,将 `plt.ylabel('歌曲名')` 改为 `plt.ylabel('发布时间')`。 4. 折线图的横坐标应该是时间,而不是歌曲名,可以尝试使用 `dates.date2num()` 将时间字符串转换为 matplotlib 中的日期格式,再进行绘图。 希望这些提示可以帮助你进一步完善代码。

调试并运行下述案例代码,给代码做注释。在此基础上补充票房 TOP10 的柱状 图展示。 import pandas as pd import numpy as np from matplotlib import pyplot as plt from matplotlib.ticker import MultipleLocator datas = pd.read_csv(r'2015-2020.txt', index_col=0) datas = datas.sort_index(ascending=False) datas = pd.DataFrame(datas.values, index=range(1, 11), \ columns=datas.columns) data2020 = pd.read_csv(r'2020.txt') def drawLines(): ax = plt.subplot(131) for date in datas.columns: plt.plot([10 - i for i in range(datas.shape[0])], \ datas[date], label=date) plt.ylim(0, 600000) ymajorLocator = MultipleLocator(50000) xmajorLocator = MultipleLocator(1) ax.yaxis.set_major_locator(ymajorLocator) ax.xaxis.set_major_locator(xmajorLocator) plt.title('2015-2020 年度票房 Top10 折线图') plt.xlabel('票房名次') plt.grid() plt.legend() def drawPie(): plt.subplot(233) plt.pie(datas['2019'], autopct='%1.1f%%') plt.title('2019 年度票房 Top10 饼图') plt.subplot(236) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['font.family'] = 'sans-serif' plt.pie(data2020['boxoffice'], autopct='%1.1f%%', \ labels=data2020['name']) plt.title('2020 年度票房 Top10 饼图') if __name__ == '__main__': plt.subplots(figsize=(20, 8)) drawLines() drawPie() plt.show()

```python # 导入 pandas, numpy, pyplot 和 MultipleLocator 库 import pandas as pd import numpy as np from matplotlib import pyplot as plt from matplotlib.ticker import MultipleLocator # 读取数据并按照时间降序排序 datas = pd.read_csv(r'2015-2020.txt', index_col=0) datas = datas.sort_index(ascending=False) # 将数据转换为 DataFrame 格式,索引是票房排名,列是年份 datas = pd.DataFrame(datas.values, index=range(1, 11), columns=datas.columns) # 读取 2020 年数据 data2020 = pd.read_csv(r'2020.txt') # 绘制 2015-2020 年度票房 Top10 折线图 def drawLines(): ax = plt.subplot(131) # 创建子图 for date in datas.columns: # 循环每年的票房数据 plt.plot([10 - i for i in range(datas.shape[0])], datas[date], label=date) # 绘制折线图 plt.ylim(0, 600000) # 设置 y 轴范围 ymajorLocator = MultipleLocator(50000) # 设置 y 轴主刻度 xmajorLocator = MultipleLocator(1) # 设置 x 轴主刻度 ax.yaxis.set_major_locator(ymajorLocator) # 设置 y 轴主刻度 ax.xaxis.set_major_locator(xmajorLocator) # 设置 x 轴主刻度 plt.title('2015-2020 年度票房 Top10 折线图') # 设置标题 plt.xlabel('票房名次') # 设置 x 轴标签 plt.grid() # 显示网格线 plt.legend() # 显示图例 # 绘制 2019 年度票房 Top10 饼图和 2020 年度票房 Top10 饼图 def drawPie(): plt.subplot(233) # 创建子图 plt.pie(datas['2019'], autopct='%1.1f%%') # 绘制饼图 plt.title('2019 年度票房 Top10 饼图') # 设置标题 plt.subplot(236) # 创建子图 plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体 plt.rcParams['font.family'] = 'sans-serif' plt.pie(data2020['boxoffice'], autopct='%1.1f%%', labels=data2020['name']) # 绘制饼图 plt.title('2020 年度票房 Top10 饼图') # 设置标题 if __name__ == '__main__': plt.subplots(figsize=(20, 8)) # 创建画布 drawLines() # 绘制折线图 drawPie() # 绘制饼图 plt.show() # 显示图形 ``` 补充票房 TOP10 的柱状图展示如下: ```python import pandas as pd import numpy as np from matplotlib import pyplot as plt # 读取数据并按照时间降序排序 datas = pd.read_csv(r'2015-2020.txt', index_col=0) datas = datas.sort_index(ascending=False) datas = pd.DataFrame(datas.values, index=range(1, 11), columns=datas.columns) # 绘制柱状图 plt.subplots(figsize=(20, 8)) plt.bar(datas.index, datas['2020']) plt.xticks(datas.index, datas.index) plt.title('2020 年度票房 Top10 柱状图') plt.xlabel('票房排名') plt.ylabel('票房(万元)') plt.show() ``` 柱状图展示如下: 注意:柱状图只显示了 2020 年的数据。如果需要同时显示所有年份的数据,可以将 `datas` DataFrame 中的数据按照年份分组,再分别绘制柱状图,并将柱状图放在同一张图中。
阅读全文

相关推荐

最新推荐

recommend-type

Python Matplotlib实用操作汇总

首先,我们导入必要的库,包括numpy和matplotlib.pyplot,通常简写为`np`和`plt`。对于使用LaTeX来增强文本格式,可以通过设置`text.usetex`参数为True,这允许在图表中使用LaTeX语法来编写数学公式和特殊字符。 在...
recommend-type

VB+ACCESS大型机房学生上机管理系统(源代码+系统)(2024n5).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

白色大气风格的影视传媒公司企业网站源码下载.zip

白色大气风格的影视传媒公司企业网站源码下载.zip
recommend-type

白色大气风格的电子邮件订阅模板下载.zip

白色大气风格的电子邮件订阅模板下载.zip
recommend-type

基于libos架构的操作系统核心库及构建工具

TenonOS:简化复杂性,释放创新力,重塑操作系统的开发模式。TenonOS是一款基于LibOS架构的操作系统,旨在提升操作系统扩展、裁剪、移植效率,基于丰富的微库组件池,实现跨场景、跨行业、跨领域的快速能力复用,灵活生成与场景最契合的OS实体。
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。