SELECT t.id,t.order_number,t.registration_Time,t.inspect_unit,t.inspect_form,t.unit_type,t.unit_ids,t.unit_name, t.problem,t.ask_leave_ids,t.ask_leave_name,t.disposal_situation,t.catalog_id,t.street_name,t.check_street_ids,t.check_street_name,t.receive_Unit,sd.dept_name AS receive_Unit_Name FROM tb_duty_inspect_class t LEFT JOIN tb_sys_dept sd ON sd.ID = t.receive_Unit WHERE t.is_delete='0' 我要根据receive_Unit 查询unit_name
时间: 2024-02-25 22:56:27 浏览: 40
好的,您需要根据 `receive_Unit` 查询 `unit_name`,可以使用以下 SQL 语句:
```
SELECT t.unit_name
FROM tb_duty_inspect_class t
LEFT JOIN tb_sys_dept sd ON sd.ID = t.receive_Unit
WHERE t.is_delete = '0' AND sd.dept_name = 'receive_unit的值';
```
其中 `receive_unit的值` 部分需要替换成您想要查询的 `receive_unit` 的具体值。执行该 SQL 语句后,会返回符合条件的 `unit_name`。
相关问题
程序无法执行,修改class Processor(): def __init__(self): self._inspect_step = int(cfg.get('PROCESS', 'INSPECT_STEP')) def capture_img(self): global aco aco = aco + 1 self._cam.stream_on() raw_image = self._cam.data_stream[0].get_image() if raw_image is None: print("Getting image failed.\n") return None print("Frame ID: {} Height: {} Width: {} Count: {}\n" .format(raw_image.get_frame_id(), raw_image.get_height(), raw_image.get_width(), aco - 2)) numpy_image = raw_image.get_numpy_array() if numpy_image is None: return None img = Image.fromarray(numpy_image, 'L') if self._issave: picfile = '{}/{}.bmp'.format(self._picpath, self._piccount) self._piccount = self._piccount + 1 img.save(picfile) if self._isshow: w, h = img.size scale = min(1.0 * IMG_RESIZE_W / w, 1.0 * IMG_RESIZE_H / h) self._img = ImageTk.PhotoImage(image=img.resize((int(w * scale), int(h * scale)), Image.ANTIALIAS)) self._show_cb(self._img) self._cam.stream_off() return img def process_img(self, img): return PROC_OK def inspect(self): print("process2") time.sleep(1) def rotate(self): count = 0 aco = 0 self.threadsignal = 0 while self._running: v = self._dgl.qpin(ROT) if len(v) > 0: count = count + sum(v) if count > self._inspect_step: aco += 1 img = self.capture_img() count = count - self._inspect_step if __name__ == '__main__': task2 = multiprocessing.Process(target=self.inspect) task2.start() task1 = multiprocessing.Process(target=self.rotate) task1.start()
在这段代码中,有几个问题可以被改进。首先,类 `Processor` 中的全局变量 `aco` 可能会导致并发问题,在多进程环境下应该避免使用全局变量。其次,代码中出现了 `time.sleep()`,这会阻塞当前进程并造成性能瓶颈,应该尽量避免使用。
以下是可能的改进方案:
1. 将 `aco` 变量改为实例变量,避免多进程之间的并发问题。
2. 使用 `Queue` 或其他进程间通信机制替代全局变量,避免多进程之间的竞争。
3. 将 `time.sleep()` 改为使用定时器或者事件,避免阻塞进程并提高程序的性能。
4. 在多进程环境中,使用 `if __name__ == '__main__':` 来避免创建子进程时出现递归调用的问题。
以下是修改后的代码示例:
```python
import multiprocessing
from queue import Queue
import time
class Processor():
def __init__(self):
self._inspect_step = int(cfg.get('PROCESS', 'INSPECT_STEP'))
self._aco = 0
self._queue = Queue()
def capture_img(self):
self._aco += 1
self._cam.stream_on()
raw_image = self._cam.data_stream[0].get_image()
if raw_image is None:
print("Getting image failed.\n")
return None
print("Frame ID: {} Height: {} Width: {} Count: {}\n".format(raw_image.get_frame_id(), raw_image.get_height(), raw_image.get_width(), self._aco - 2))
numpy_image = raw_image.get_numpy_array()
if numpy_image is None:
return None
img = Image.fromarray(numpy_image, 'L')
if self._issave:
picfile = '{}/{}.bmp'.format(self._picpath, self._piccount)
self._piccount = self._piccount + 1
img.save(picfile)
if self._isshow:
w, h = img.size
scale = min(1.0 * IMG_RESIZE_W / w, 1.0 * IMG_RESIZE_H / h)
self._img = ImageTk.PhotoImage(image=img.resize((int(w * scale), int(h * scale)), Image.ANTIALIAS))
self._show_cb(self._img)
self._cam.stream_off()
return img
def process_img(self, img):
return PROC_OK
def inspect(self):
print("process2")
while self._running:
time.sleep(1)
self._queue.put("task")
def rotate(self):
count = 0
while self._running:
v = self._dgl.qpin(ROT)
if len(v) > 0:
count = count + sum(v)
if count > self._inspect_step:
self._aco += 1
img = self.capture_img()
count = count - self._inspect_step
try:
task = self._queue.get(block=False)
if task == "task":
print("processing task")
except:
pass
if __name__ == '__main__':
p = Processor()
p._running = True
task2 = multiprocessing.Process(target=p.inspect)
task2.start()
task1 = multiprocessing.Process(target=p.rotate)
task1.start()
```
请注意,这里只是对原始代码的一些修改建议,并不能保证这样的修改能够完全解决问题。在实际环境中,还需要根据具体情况进行调整和优化。
优化程序,将这段程序放到子线程里。def rotate(self): count = 0 self._sem.release() while self._running: v = self._dgl.qpin(ROT) if len(v) > 0: count = count + sum(v) if count > self._inspect_step: self._sem.release() count = count % self._inspect_step
可以使用Python内置的`threading`模块来将程序放到子线程中运行。具体实现如下:
```python
import threading
class MyThread(threading.Thread):
def __init__(self, rotate_func):
threading.Thread.__init__(self)
self.rotate_func = rotate_func
def run(self):
self.rotate_func()
class MyClass:
def __init__(self):
self._running = True
self._sem = threading.Semaphore(0)
def rotate(self):
count = 0
self._sem.release()
while self._running:
v = self._dgl.qpin(ROT)
if len(v) > 0:
count = count + sum(v)
if count > self._inspect_step:
self._sem.release()
count = count % self._inspect_step
my_class = MyClass()
thread = MyThread(my_class.rotate)
thread.start()
```
这样,`rotate`方法就会在一个独立的线程中运行,不会阻塞主线程。当需要停止`rotate`方法时,只需要将`my_class._running`设置为`False`即可。
阅读全文