使用MATLAB对一副灰度图像,进行DCT变换编码压缩(熵编码采用Huffman),并进而将其解码实现图像的重现代码
时间: 2024-02-23 12:00:20 浏览: 85
好的,以下是MATLAB代码实现DCT变换编码压缩和解码重现:
```matlab
% 读取原始图像
img = imread('lena.png');
% 转换为灰度图像
img_gray = rgb2gray(img);
% 将图像分块
block_size = 8;
[h, w] = size(img_gray);
num_blocks_h = floor(h / block_size);
num_blocks_w = floor(w / block_size);
% 初始化DCT系数矩阵
dct_coeffs = zeros(num_blocks_h * block_size, num_blocks_w * block_size);
% 对每个块进行DCT变换
for i = 1:num_blocks_h
for j = 1:num_blocks_w
block = img_gray((i-1)*block_size+1:i*block_size, (j-1)*block_size+1:j*block_size);
dct_block = dct2(block);
dct_coeffs((i-1)*block_size+1:i*block_size, (j-1)*block_size+1:j*block_size) = dct_block;
end
end
% 量化矩阵
quant_matrix = [16 11 10 16 24 40 51 61;
12 12 14 19 26 58 60 55;
14 13 16 24 40 57 69 56;
14 17 22 29 51 87 80 62;
18 22 37 56 68 109 103 77;
24 35 55 64 81 104 113 92;
49 64 78 87 103 121 120 101;
72 92 95 98 112 100 103 99];
% 量化
quant_coeffs = round(dct_coeffs ./ quant_matrix);
% 将量化后的DCT系数按照频率进行排序
coeffs_flat = quant_coeffs(:);
coeffs_sorted = sort(coeffs_flat);
coeffs_freq = histc(coeffs_sorted, unique(coeffs_sorted));
% 构建Huffman编码树
symbols = unique(coeffs_sorted);
p = coeffs_freq / sum(coeffs_freq);
dict = huffmandict(symbols, p);
% Huffman编码
encoded_data = huffmanenco(coeffs_flat, dict);
% 解码
decoded_data = huffmandeco(encoded_data, dict);
% 逆量化
quant_coeffs_decoded = reshape(decoded_data, num_blocks_h * block_size, num_blocks_w * block_size);
dct_coeffs_decoded = quant_coeffs_decoded .* quant_matrix;
% 逆DCT变换
img_gray_decoded = zeros(h, w);
for i = 1:num_blocks_h
for j = 1:num_blocks_w
dct_block_decoded = dct_coeffs_decoded((i-1)*block_size+1:i*block_size, (j-1)*block_size+1:j*block_size);
block_decoded = idct2(dct_block_decoded);
img_gray_decoded((i-1)*block_size+1:i*block_size, (j-1)*block_size+1:j*block_size) = block_decoded;
end
end
% 显示重建后的图像
imshow(uint8(img_gray_decoded));
```
这段代码可以实现对lena.png图像的DCT变换编码压缩和解码重现,其中量化矩阵采用了JPEG标准中的量化矩阵。您可以根据需要修改量化矩阵,或者使用其他的熵编码方法进行编码压缩。
阅读全文