self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ]))

时间: 2023-06-18 09:06:38 浏览: 60
这段代码是一个 MLP(多层感知器)的实现,用于在 Transformer 中的每个 Encoder 和 Decoder 层中进行位置前馈网络(Position-wise Feedforward Networks)操作。它包含三个层: 1. `nn.Linear(d_model, d_model * 4)`: 输入层是d_model维,输出层是d_model * 4维,即将输入向量映射到一个更高维度的空间。 2. `QuickGELU()`: 快速的GeLU激活函数,将线性变换的结果进行非线性变换。 3. `nn.Linear(d_model * 4, d_model)`: 最后一个线性层将高维向量映射回d_model维,即将向量的维度降低到原始的维度。 通过这个 MLP,Transformer 可以更好地捕捉不同位置的不同特征,提高模型的性能。
相关问题

class MLP(nn.Module): def __init__( self, input_size: int, output_size: int, n_hidden: int, classes: int, dropout: float, normalize_before: bool = True ): super(MLP, self).__init__() self.input_size = input_size self.dropout = dropout self.n_hidden = n_hidden self.classes = classes self.output_size = output_size self.normalize_before = normalize_before self.model = nn.Sequential( nn.Linear(self.input_size, n_hidden), nn.Dropout(self.dropout), nn.ReLU(), nn.Linear(n_hidden, self.output_size), nn.Dropout(self.dropout), nn.ReLU(), ) self.after_norm = torch.nn.LayerNorm(self.input_size, eps=1e-5) self.fc = nn.Sequential( nn.Dropout(self.dropout), nn.Linear(self.input_size, self.classes) ) self.output_layer = nn.Linear(self.output_size, self.classes) def forward(self, x): self.device = torch.device('cuda') # x = self.model(x) if self.normalize_before: x = self.after_norm(x) batch_size, length, dimensions = x.size(0), x.size(1), x.size(2) output = self.model(x) return output.mean(dim=1) class LabelSmoothingLoss(nn.Module): def __init__(self, size: int, smoothing: float, ): super(LabelSmoothingLoss, self).__init__() self.size = size self.criterion = nn.KLDivLoss(reduction="none") self.confidence = 1.0 - smoothing self.smoothing = smoothing def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: batch_size = x.size(0) if self.smoothing == None: return nn.CrossEntropyLoss()(x, target.view(-1)) true_dist = torch.zeros_like(x) true_dist.fill_(self.smoothing / (self.size - 1)) true_dist.scatter_(1, target.view(-1).unsqueeze(1), self.confidence) kl = self.criterion(torch.log_softmax(x, dim=1), true_dist) return kl.sum() / batch_size

这段代码中定义了一个 MLP 模型以及一个 LabelSmoothingLoss 损失函数。MLP 模型包含了多个线性层和 ReLU 激活函数,以及一个 LayerNorm 层和一个 dropout 层。LabelSmoothingLoss 损失函数主要用于解决分类问题中的过拟合问题,它通过对真实标签进行平滑处理来减少模型对噪声的敏感度。这段代码的 forward 方法实现了 MLP 模型的前向传播,以及 LabelSmoothingLoss 的计算。其中,true_dist 是经过平滑处理后的真实标签分布,kl 是计算 KL 散度的结果,最终返回的是 kl 的平均值。

Swin Transformer model代码

以下是Swin Transformer的PyTorch代码实现,包括Swin Transformer的模型定义和训练过程: ```python import torch import torch.nn as nn import torch.nn.functional as F class SwinBlock(nn.Module): """Swin Transformer Block""" def __init__(self, dim, num_heads, window_size=7, shift_size=0): super().__init__() self.norm1 = nn.LayerNorm(dim) self.attn = nn.MultiheadAttention(dim, num_heads) self.norm2 = nn.LayerNorm(dim) self.mlp = nn.Sequential( nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, dim), ) self.window_size = window_size self.shift_size = shift_size if window_size == 1 and shift_size == 0: self.window_attn = None else: self.window_attn = nn.MultiheadAttention(dim, num_heads) def forward(self, x): res = x x = self.norm1(x) if self.window_attn is not None: b, n, d = x.shape assert n % self.window_size == 0, "sequence length must be divisible by window size" x = x.reshape(b, n // self.window_size, self.window_size, d) x = x.permute(0, 2, 1, 3) x = x.reshape(b * self.window_size, n // self.window_size, d) window_res = x x = self.window_attn(x, x, x)[0] x = x.reshape(b, self.window_size, n // self.window_size, d) x = x.permute(0, 2, 1, 3) x = x.reshape(b, n, d) x += window_res x = x + self.attn(x, x, x)[0] x = res + x res = x x = self.norm2(x) x = x + self.mlp(x) x = res + x if self.shift_size > 0: x = F.pad(x, (0, 0, 0, 0, self.shift_size, 0)) x = x[:, :-self.shift_size, :] return x class SwinTransformer(nn.Module): """Swin Transformer Model""" def __init__(self, img_size, patch_size, in_chans, num_classes, embed_dim, depths, num_heads, window_size=7, shift_size=0): super().__init__() assert img_size % patch_size == 0, "image size must be divisible by patch size" num_patches = (img_size // patch_size) ** 2 patch_dim = in_chans * patch_size ** 2 self.patch_size = patch_size # Patch Embeddings self.patch_embed = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) # Stages self.stages = nn.ModuleList([ nn.Sequential(*[ SwinBlock(embed_dim, num_heads, window_size, shift_size) for _ in range(depth) ]) for depth in depths ]) # Classifier Head self.norm = nn.LayerNorm(embed_dim) self.avgpool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Linear(embed_dim, num_classes) def forward(self, x): x = self.patch_embed(x) b, c, h, w = x.shape x = x.flatten(2).transpose(1, 2) x = x + self.pos_embed x = self.norm(x) for stage in self.stages: x = stage(x) x = self.avgpool(x.transpose(1, 2).reshape(b, c, h // self.patch_size, w // self.patch_size)) x = x.flatten(1) x = self.fc(x) return x ``` 训练过程: ```python import torch.optim as optim # Define Model model = SwinTransformer( img_size=224, patch_size=4, in_chans=3, num_classes=10, embed_dim=96, depths=[2, 2, 6, 2], num_heads=6, window_size=7, shift_size=2, ) model.cuda() # Define Loss and Optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # Train Model for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data inputs, labels = inputs.cuda(), labels.cuda() optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print(f"Epoch {epoch+1}: Training Loss = {running_loss/len(trainloader)}") ```

相关推荐

最新推荐

recommend-type

chromedriver-win64_121.0.6123.0.zip

chromedriver-win64_121.0.6123.0.zip
recommend-type

Chekiang Shu Ke Sung-mianfeiziti字體下載

Chekiang Shu Ke Sung-mianfeiziti字體下載
recommend-type

中国科学院大学22-23秋季学期 《程序设计基础与实验(C语言)》课程大作业——基于Min-Max搜索策略的五子棋对战程序

C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。在编写C程序时,需要注意变量的声明和定义、指针的使用、内存的分配与释放等问题。C语言中常用的数据结构包括: 1. 数组:一种存储同类型数据的结构,可以进行索引访问和修改。 2. 链表:一种存储不同类型数据的结构,每个节点包含数据和指向下一个节点的指针。 3. 栈:一种后进先出(LIFO)的数据结构,可以通过压入(push)和弹出(pop)操作进行数据的存储和取出。 4. 队列:一种先进先出(FIFO)的数据结构,可以通过入队(enqueue)和出队(dequeue)操作进行数据的存储和取出。 5. 树:一种存储具有父子关系的数据结构,可以通过中序遍历、前序遍历和后序遍历等方式进行数据的访问和修改。 6. 图:一种存储具有节点和边关系的数据结构,可以通过广度优先搜索、深度优先搜索等方式进行数据的访问和修改。 这些数据结构在C语言中都有相应的实现方式,可以应用于各种不同的场景。C语言中的各种数据结构都有其优缺点,下面列举一些常见的数据结构的优缺点: 数组: 优点:访问和修改元素的速度非常快,适用于需要频繁读取和修改数据的场合。 缺点:数组的长度是固定的,不适合存储大小不固定的动态数据,另外数组在内存中是连续分配的,当数组较大时可能会导致内存碎片化。 链表: 优点:可以方便地插入和删除元素,适用于需要频繁插入和删除数据的场合。 缺点:访问和修改元素的速度相对较慢,因为需要遍历链表找到指定的节点。 栈: 优点:后进先出(LIFO)的特性使得栈在处理递归和括号匹配等问题时非常方便。 缺点:栈的空间有限,当数据量较大时可能会导致栈溢出。 队列: 优点:先进先出(FIFO)的特性使得
recommend-type

高级信息通信运行管理员第七套试卷

这是高级信息通信运行管理员考证试卷
recommend-type

visualstudio安装教程的分享

Visual Studio安装与使用案例简介 目的: 向用户展示如何在Windows系统上下载、安装并开始使用Visual Studio集成开发环境(IDE)。 案例内容: 访问Visual Studio官方网站并选择适合的版本。 下载并启动Visual Studio安装程序。 在安装向导中选择所需的工作负载和组件。 设置安装路径,选择非系统盘以节省空间。 完成安装并启动Visual Studio。 创建一个新的项目,例如C++空项目。 编写并运行一个简单的"Hello, World!"程序来测试开发环境。 关键点: 选择合适的Visual Studio版本,如免费的Community版本。 理解工作负载的概念,选择与开发需求相关的功能。 了解如何自定义安装设置,包括安装路径和语言包。 掌握创建新项目和编写代码的基本流程。
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。