input_data = x_train.unsqueeze(1)

时间: 2024-06-04 22:10:04 浏览: 187
这行代码的作用是将`x_train`张量的维度从`(batch_size, seq_length)`扩展为`(batch_size, 1, seq_length)`,其中`unsqueeze(1)`的作用是在第1个维度上添加一个维度。这样做的目的通常是为了将数据传递给需要三维输入的模型,例如卷积神经网络。
相关问题

基于以下代码,加入图像高斯模糊处理代码:import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchvision import datasets,transforms import matplotlib.pyplot as plt import numpy as np import pylab %matplotlib inline # 定义超参数 input_size = 28 #图像的总尺寸28*28 num_classes = 10 #标签的种类数 num_epochs = 10 #训练的总循环周期 batch_size = 64 #一个撮(批次)的大小,64张图片 # 训练集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) # 测试集 test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 构建batch数据 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)

可以将以下代码加入到定义超参数的代码块后面,实现对训练集和测试集图像的高斯模糊处理: ``` # 定义高斯模糊的卷积核 blur_kernel = np.array([[1, 2, 1], [2, 4, 2], [1, 2, 1]]) / 16. # 定义高斯模糊的函数 def gaussian_blur(x): x = np.array(x) _, c, h, w = x.shape blur_kernel_tensor = torch.from_numpy(blur_kernel).unsqueeze(0).repeat(c, 1, 1, 1).float().to(x.device) x_blur = F.conv2d(x, blur_kernel_tensor, padding=(1, 1)) return x_blur # 对训练集图像进行高斯模糊处理 for i, (images, labels) in enumerate(train_loader): train_loader.dataset.data[i*batch_size:(i+1)*batch_size] = gaussian_blur(images).squeeze().detach().numpy()*255 # 对测试集图像进行高斯模糊处理 for i, (images, labels) in enumerate(test_loader): test_loader.dataset.data[i*batch_size:(i+1)*batch_size] = gaussian_blur(images).squeeze().detach().numpy()*255 ``` 注意,由于 MNIST 数据集中的像素值范围为 0~255,高斯模糊处理后的像素值可能会出现小数,需要将其乘以 255 后转换为整数的像素值。

pytorch部分代码如下:train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) samples, targets = mixup_fn(data, target) output = model(samples) optimizer.zero_grad() if use_amp: with torch.cuda.amp.autocast(): loss = torch.nan_to_num(criterion_train(output, targets)) scaler.scale(loss).backward() torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks or global_forward_hooks or global_forward_pre_hooks): return forward_call(*input, **kwargs) class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) target = torch.clamp(target, 0, index.size(1) - 1) index.scatter_(1, target.unsqueeze(1).type(torch.int64), 1) index = index[:, :x.size(1)] index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight) 报错: File "/home/adminis/hpy/ConvNextV2_Demo/train+ca.py", line 46, in train loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss File "/home/adminis/anaconda3/envs/wln/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/home/adminis/hpy/ConvNextV2_Demo/models/utils.py", line 622, in forward index.scatter_(1, target.unsqueeze(1).type(torch.int64), 1) # target.data.view(-1, 1). RuntimeError: Index tensor must have the same number of dimensions as self tensor 帮我看看如何修改源代码

从错误信息来看,`index`张量的维度和`target`张量不匹配。你可以尝试检查以下`target`张量的形状,看是否存在问题。同时,你可以在 `index.scatter_` 操作之前,将 `index` 张量的最后一维进行裁剪,使其与 `output` 张量的最后一维相同,例如: ``` index = torch.zeros_like(x, dtype=torch.uint8) target = torch.clamp(target, 0, index.size(1) - 1) index = index[:, :x.size(-1)] # 裁剪最后一维 target = target[:, :x.size(-1)] # 裁剪最后一维 index.scatter_(1, target.unsqueeze(1).type(torch.int64), 1) ``` 另外,你还需要检查 `target` 张量是否位于正确的设备上,可在 `forward` 方法中添加以下代码,将 `target` 张量移动到与 `x` 张量相同的设备上: ``` target = target.to(x.device) ```
阅读全文

相关推荐

import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt from torch import autograd """ 用神经网络模拟微分方程,f(x)'=f(x),初始条件f(0) = 1 """ class Net(nn.Module): def __init__(self, NL, NN): # NL n个l(线性,全连接)隐藏层, NN 输入数据的维数, # NL是有多少层隐藏层 # NN是每层的神经元数量 super(Net, self).__init__() self.input_layer = nn.Linear(1, NN) self.hidden_layer = nn.Linear(NN,int(NN/2)) ## 原文这里用NN,我这里用的下采样,经过实验验证,“等采样”更优。更多情况有待我实验验证。 self.output_layer = nn.Linear(int(NN/2), 1) def forward(self, x): out = torch.tanh(self.input_layer(x)) out = torch.tanh(self.hidden_layer(out)) out_final = self.output_layer(out) return out_final net=Net(4,20) # 4层 20个 mse_cost_function = torch.nn.MSELoss(reduction='mean') # Mean squared error 均方误差求 optimizer = torch.optim.Adam(net.parameters(),lr=1e-4) # 优化器 def ode_01(x,net): y=net(x) y_x = autograd.grad(y, x,grad_outputs=torch.ones_like(net(x)),create_graph=True)[0] return y-y_x # y-y' = 0 # requires_grad=True).unsqueeze(-1) plt.ion() # 动态图 iterations=200000 for epoch in range(iterations): optimizer.zero_grad() # 梯度归0 ## 求边界条件的损失函数 x_0 = torch.zeros(2000, 1) y_0 = net(x_0) mse_i = mse_cost_function(y_0, torch.ones(2000, 1)) # f(0) - 1 = 0 ## 方程的损失函数 x_in = np.random.uniform(low=0.0, high=2.0, size=(2000, 1)) pt_x_in = autograd.Variable(torch.from_numpy(x_in).float(), requires_grad=True) # x 随机数 pt_y_colection=ode_01(pt_x_in,net) pt_all_zeros= autograd.Variable(torch.from_numpy(np.zeros((2000,1))).float(), requires_grad=False) mse_f=mse_cost_function(pt_y_colection, pt_all_zeros) # y-y' = 0 loss = mse_i + mse_f loss.backward() # 反向传播 optimizer.step() # 优化下一步。This is equivalent to : theta_new = theta_old - alpha * derivative of J w.r.t theta if epoch%1000==0: y = torch.exp(pt_x_in) # y 真实值 y_train0 = net(pt_x_in) # y 预测值 print(epoch, "Traning Loss:", loss.data) print(f'times {epoch} - loss: {loss.item()} - y_0: {y_0}') plt.cla() plt.scatter(pt_x_in.detach().numpy(), y.detach().numpy()) plt.scatter(pt_x_in.detach().numpy(), y_train0.detach().numpy(),c='red') plt.pause(0.1)

pytorch部分代码如下:train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) # 3、将数据输入mixup_fn生成mixup数据 samples, targets = mixup_fn(data, target) # 4、将上一步生成的数据输入model,输出预测结果,再计算loss output = model(samples) # 5、梯度清零(将loss关于weight的导数变成0) optimizer.zero_grad() # 6、若使用混合精度 if use_amp: with torch.cuda.amp.autocast(): # 开启混合精度 loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss scaler.scale(loss).backward() # 梯度放大 torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks or global_forward_hooks or global_forward_pre_hooks): return forward_call(*input, **kwargs) class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) target = torch.clamp(target, 0, index.size(1) - 1) index.scatter(1, target.data.view(-1, 1).type(torch.int64), 1) index = index[:, :x.size(1)] index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight) 报错:RuntimeError: Expected index [112, 1] to be smaller than self [16, 7] apart from dimension 1 帮我看看如何修改源代码

最新推荐

recommend-type

utlog.sqlite

utlog.sqlite
recommend-type

钢结构原理课程设计:露顶式平面钢闸门设计任务及指南

内容概要:本文档为《钢结构原理》课程设计任务及指导书,主要面向水利水电工程专业的学生。详细介绍了课程设计的目的,旨在帮助学生掌握钢结构基本理论以及相关规范的使用方法,培养独立分析和解决实际工程问题的能力。提供了设计所需的背景资料,如提升式平面钢闸门的相关参数及其启动装置、选用材料等。具体的设计内容包括但不限于了解任务要求,确定结构形式,设计面板及各类梁的设计计算。同时提出了明确的设计要求和成果形式。 适合人群:水利水电工程专业的本科生或研究生,尤其是已学习过《钢结构原理》课程的学生。 使用场景及目标:通过本任务的学习和实践,学生能加深对钢结构设计理念的理解,在实际操作过程中学会应用国家最新规范进行结构设计计算,提升个人的专业能力和项目经验。 阅读建议:结合课本内容及相关行业规范认真阅读和准备设计方案,注意手绘图纸的质量和技术报告的撰写要求。
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【热传递模型的终极指南】:掌握分类、仿真设计、优化与故障诊断的18大秘诀

![热传递模型](https://study.com/cimages/videopreview/radiation-heat-transfer-the-stefan-boltzmann-law_135679.png) # 摘要 热传递模型在工程和物理学中占有重要地位,对于提高热交换效率和散热设计至关重要。本文系统性地介绍了热传递模型的基础知识、分类以及在实际中的应用案例。文章详细阐述了导热、对流换热以及辐射传热的基本原理,并对不同类型的热传递模型进行了分类,包括稳态与非稳态模型、一维到三维模型和线性与非线性模型。通过仿真设计章节,文章展示了如何选择合适的仿真软件、构建几何模型、设置材料属性和
recommend-type

python经典题型和解题代码

Python的经典题型通常涵盖了基础语法、数据结构、算法、函数式编程、文件操作、异常处理以及网络爬虫等内容。以下是一些常见的题目及其简单示例: 1. **基础题**: - 示例:打印九九乘法表 ```python for i in range(1, 10): print(f"{i} * {i} = {i*i}") ``` 2. **数据结构**: - 示例:实现队列(使用列表) ```python class Queue: def __init__(self):