stm32中 TIM_DeInit(TIM2); TIM_TimeBaseStructure.TIM_Period = (1000-1); TIM_TimeBaseStructure.TIM_Prescaler =(72-1); TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);参数含义
时间: 2023-06-08 09:06:58 浏览: 323
这段代码在STM32的定时器中起什么作用?
这段代码主要是用来初始化STM32的定时器2,并设置定时器2的计数模式为向上计数模式,时钟分频系数为1,时钟分频因子为1,定时器的ARR寄存器的值为999,实现了定时器2每隔1毫秒就会定时溢出。
相关问题
stm32代码_STM32之低成本的环境噪声传感器的使用(内含原理图和代码)
好的,我可以给你一份使用STM32的低成本环境噪声传感器的代码,但是需要先了解一下传感器的原理和接线。
环境噪声传感器通常是通过声音压力传感器来检测环境噪声水平的。当声音传感器接收到声波时,会产生微小的电信号,该信号经过放大和滤波后,可以转换为数字信号,用于检测环境噪声水平。
以下是使用STM32的低成本环境噪声传感器的代码:
首先,需要定义一些变量和引脚:
```
#include "stm32f10x.h"
#define ADC1_DR_Address ((uint32_t)0x4001244C)
__IO uint16_t ADCConvertedValue;
GPIO_InitTypeDef GPIO_InitStructure;
ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
NVIC_InitTypeDef NVIC_InitStructure;
void RCC_Configuration(void);
void GPIO_Configuration(void);
void DMA_Configuration(void);
void ADC_Configuration(void);
void TIM_Configuration(void);
void NVIC_Configuration(void);
int main(void)
{
RCC_Configuration();
GPIO_Configuration();
DMA_Configuration();
ADC_Configuration();
TIM_Configuration();
NVIC_Configuration();
while (1)
{
}
}
void RCC_Configuration(void)
{
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
}
void GPIO_Configuration(void)
{
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
void DMA_Configuration(void)
{
DMA_DeInit(DMA1_Channel1);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)ADC1_DR_Address;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&ADCConvertedValue;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = 1;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);
DMA_Cmd(DMA1_Channel1, ENABLE);
}
void ADC_Configuration(void)
{
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 1;
ADC_Init(ADC1, &ADC_InitStructure);
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_28Cycles5);
ADC_DMACmd(ADC1, ENABLE);
ADC_Cmd(ADC1, ENABLE);
ADC_ResetCalibration(ADC1);
while (ADC_GetResetCalibrationStatus(ADC1));
ADC_StartCalibration(ADC1);
while (ADC_GetCalibrationStatus(ADC1));
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
}
void TIM_Configuration(void)
{
TIM_TimeBaseStructure.TIM_Period = 36000 - 1;
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
TIM_SelectOutputTrigger(TIM2, TIM_TRGOSource_Update);
TIM_Cmd(TIM2, ENABLE);
}
void NVIC_Configuration(void)
{
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
void DMA1_Channel1_IRQHandler(void)
{
if (DMA_GetITStatus(DMA1_IT_TC1))
{
DMA_ClearITPendingBit(DMA1_IT_TC1);
printf("%d\n", ADCConvertedValue);
}
}
```
以上就是使用STM32的低成本环境噪声传感器的代码,其中包括了引脚定义、ADC配置、DMA配置等,需要根据具体的硬件进行调整。同时,需要注意传感器的接线,一般需要连接到ADC通道上进行采集。
基于stm32f407的云台舵机KEY1控制水平转动、KEY2控制上下转动
以下是一个基于STM32F407的云台舵机控制代码示例,其中使用TIM2和TIM3定时器控制两个舵机的PWM输出,通过读取ADC的值来获取控制信号(这里假设使用PA0和PA1作为ADC输入):
```c
#include "stm32f4xx.h"
#define PWM_PERIOD 20000 // PWM周期,单位为us
#define PWM_MIN 1000 // PWM最小值,单位为us
#define PWM_MAX 2000 // PWM最大值,单位为us
int main(void)
{
// 初始化GPIO
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// 初始化TIM2
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Period = PWM_PERIOD - 1;
TIM_TimeBaseStructure.TIM_Prescaler = SystemCoreClock / 1000000 - 1;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
// 初始化TIM3
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Period = PWM_PERIOD - 1;
TIM_TimeBaseStructure.TIM_Prescaler = SystemCoreClock / 1000000 - 1;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
// 初始化PWM输出
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OC1Init(TIM2, &TIM_OCInitStructure);
TIM_OC2Init(TIM3, &TIM_OCInitStructure);
TIM_Cmd(TIM2, ENABLE);
TIM_Cmd(TIM3, ENABLE);
// 初始化ADC
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
ADC_InitTypeDef ADC_InitStructure;
ADC_CommonInitTypeDef ADC_CommonInitStructure;
ADC_DeInit();
ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2;
ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;
ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
ADC_CommonInit(&ADC_CommonInitStructure);
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = 1;
ADC_Init(ADC1, &ADC_InitStructure);
ADC_Cmd(ADC1, ENABLE);
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_15Cycles);
while (1)
{
// 获取ADC的值
int adc_value1 = ADC_GetConversionValue(ADC1);
int adc_value2 = ADC_GetConversionValue(ADC1);
// 将ADC的值映射到PWM输出范围
int pwm_value1 = (adc_value1 * (PWM_MAX - PWM_MIN) / 4095) + PWM_MIN;
int pwm_value2 = (adc_value2 * (PWM_MAX - PWM_MIN) / 4095) + PWM_MIN;
// 将PWM值输出到TIM2和TIM3
TIM_SetCompare1(TIM2, pwm_value1);
TIM_SetCompare2(TIM3, pwm_value2);
}
}
```
以上代码演示了如何使用STM32F407控制两个云台舵机的水平和上下转动,通过读取ADC的值来获取控制信号,并将信号映射为PWM输出。需要注意的是,这里没有包含舵机的驱动电路,需要根据具体的舵机和电路设计来进行调整。
阅读全文