mindspore densenet代码
时间: 2023-07-09 08:45:55 浏览: 89
以下是用MindSpore实现DenseNet的代码:
```
import mindspore.nn as nn
from mindspore.ops import operations as P
class DenseLayer(nn.Cell):
def __init__(self, in_channels, growth_rate):
super(DenseLayer, self).__init__()
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=growth_rate, kernel_size=3, padding=1, has_bias=False)
self.relu = nn.ReLU()
self.concat = P.Concat(axis=1)
def construct(self, x):
out = self.conv(x)
out = self.relu(out)
out = self.concat((x, out))
return out
class DenseBlock(nn.Cell):
def __init__(self, in_channels, growth_rate, num_layers):
super(DenseBlock, self).__init__()
self.layers = nn.SequentialCell()
for i in range(num_layers):
self.layers.append(DenseLayer(in_channels + i * growth_rate, growth_rate))
def construct(self, x):
out = x
for layer in self.layers:
out = layer(out)
return out
class TransitionLayer(nn.Cell):
def __init__(self, in_channels, out_channels):
super(TransitionLayer, self).__init__()
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, has_bias=False)
self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2)
self.relu = nn.ReLU()
def construct(self, x):
out = self.conv(x)
out = self.avg_pool(out)
out = self.relu(out)
return out
class DenseNet(nn.Cell):
def __init__(self, num_classes=10, growth_rate=12, block_config=(6, 12, 24, 16)):
super(DenseNet, self).__init__()
self.conv = nn.Conv2d(in_channels=3, out_channels=2 * growth_rate, kernel_size=3, padding=1, has_bias=False)
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
self.dense_block1 = DenseBlock(2 * growth_rate, growth_rate, block_config[0])
in_channels1 = 2 * growth_rate + block_config[0] * growth_rate
out_channels1 = in_channels1 // 2
self.trans_layer1 = TransitionLayer(in_channels1, out_channels1)
self.dense_block2 = DenseBlock(out_channels1, growth_rate, block_config[1])
in_channels2 = out_channels1 + block_config[1] * growth_rate
out_channels2 = in_channels2 // 2
self.trans_layer2 = TransitionLayer(in_channels2, out_channels2)
self.dense_block3 = DenseBlock(out_channels2, growth_rate, block_config[2])
in_channels3 = out_channels2 + block_config[2] * growth_rate
out_channels3 = in_channels3 // 2
self.trans_layer3 = TransitionLayer(in_channels3, out_channels3)
self.dense_block4 = DenseBlock(out_channels3, growth_rate, block_config[3])
in_channels4 = out_channels3 + block_config[3] * growth_rate
self.avg_pool = nn.AvgPool2d(kernel_size=8)
self.flatten = nn.Flatten()
self.fc = nn.Dense(in_channels4, num_classes)
def construct(self, x):
out = self.conv(x)
out = self.relu(out)
out = self.pool(out)
out = self.dense_block1(out)
out = self.trans_layer1(out)
out = self.dense_block2(out)
out = self.trans_layer2(out)
out = self.dense_block3(out)
out = self.trans_layer3(out)
out = self.dense_block4(out)
out = self.avg_pool(out)
out = self.flatten(out)
out = self.fc(out)
return out
```
这是一个包含了DenseNet各个模块的代码,其中包括了DenseLayer、DenseBlock、TransitionLayer和DenseNet等模块的实现。然后,我们可以通过实例化DenseNet并传入相应的参数来构建模型。
阅读全文