这是我所加的注意力机制模块:class SelfAttention(nn.Module): def init(self, in_channels, reduction=4): super(SelfAttention, self).init() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): # print("x=", x) b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x),然后运行训练程序时报错:File "/root/autodl-tmp/project/tools/../lib/net/pointnet2_msg.py", line 91, in forward y = self.fc1(y) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 258, in forward return F.conv1d(input, self.weight, self.bias, self.stride, RuntimeError: Given groups=1, weight of size [256, 1024, 1], expected input[16, 512, 1] to have 1024 channels, but got 512 channels instead你知道是为什么吗,我该如何解决?请提供详细的解决代码
时间: 2023-11-13 22:03:20 浏览: 135
TypeError: _queue_reduction(): incompatible function arguments.
根据报错信息,你的输入张量的通道数是512,但是你的第一个卷积层的输入通道数是256,这是不一致的。你需要确保第一个卷积层的输入通道数与你的输入张量的通道数相同。你可以将第一个卷积层的输入通道数改为512,即将 `in_channels // reduction` 改为 `in_channels`。修改后的代码如下:
```
class SelfAttention(nn.Module):
def __init__(self, in_channels, reduction=4):
super(SelfAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool1d(1)
self.fc1 = nn.Conv1d(in_channels, in_channels, 1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv1d(in_channels, in_channels, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b, c, n = x.size()
y = self.avg_pool(x)
y = self.fc1(y)
y = self.relu(y)
y = self.fc2(y)
y = self.sigmoid(y)
return x * y.expand_as(x)
```
另外,你的代码中有一行注释 `# print("x=", x)`,如果运行时取消注释,会造成输出过多,同时影响训练速度。建议将其删除。
阅读全文