(sigmoid(x.dot(theta))-y).dot(x)
时间: 2023-10-22 14:08:27 浏览: 87
这是 logistic 回归的代价函数的梯度下降公式,其中 x 是输入特征矩阵,theta 是特征权重,y 是真实标签。sigmoid 函数将输入乘以特征权重后的结果压缩到 0 到 1 之间,表示预测标签的概率。代价函数是通过最小化预测值与真实标签之间的差异来训练模型的,梯度下降是一种优化算法,用于调整特征权重来最小化代价函数。
相关问题
import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt # 加载 iris 数据 iris = load_iris() # 只选取两个特征和两个类别进行二分类 X = iris.data[(iris.target==0)|(iris.target==1), :2] y = iris.target[(iris.target==0)|(iris.target==1)] # 将标签转化为 0 和 1 y[y==0] = -1 # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 实现逻辑回归算法 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True, verbose=False): self.lr = lr self.num_iter = num_iter self.fit_intercept = fit_intercept self.verbose = verbose def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) # 初始化参数 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iter): # 计算梯度 z = np.dot(X, self.theta) h = self.__sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size # 更新参数 self.theta -= self.lr * gradient # 打印损失函数 if self.verbose and i % 10000 == 0: z = np.dot(X, self.theta) h = self.__sigmoid(z) loss = self.__loss(h, y) print(f"Loss: {loss} \t") def predict_prob(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold # 训练模型 model = LogisticRegressio
n()
model.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = model.predict(X_test)
# 计算准确率
accuracy = np.sum(y_pred == y_test) / y_test.shape[0]
print(f"Accuracy: {accuracy}")
# 可视化
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred)
plt.show()
请问这段代码实现了什么功能?
import numpy as np from scipy.optimize import fmin_tnc # 定义目标函数 def negative_log_likelihood(theta, X, y): # 计算模型预测值 y_pred = np.dot(X, theta) # 计算负对数似然函数 neg_log_likelihood = -np.sum(y*np.log(y_pred) + (1-y)*np.log(1-y_pred)) return neg_log_likelihood # 定义计算梯度的函数 def gradient(theta, X, y): # 计算模型预测值 y_pred = np.dot(X, theta) # 计算梯度 grad = np.dot(X.T, y_pred - y) return grad # 定义计算海森矩阵的函数 def hessian(theta, X, y): # 计算模型预测值 y_pred = np.dot(X, theta) # 计算海森矩阵 H = np.dot(X.T * y_pred * (1 - y_pred), X) return H # 定义信赖域和局部线性近似方法 def trust_region_newton(theta_init, X, y, radius=0.1, max_iter=100): theta = theta_init for i in range(max_iter): # 计算梯度和海森矩阵 grad = gradient(theta, X, y) H = hessian(theta, X, y) # 使用信赖域方法求解更新量 p = fmin_tnc(func=lambda p: np.dot(grad, p) + 0.5*np.dot(p.T, np.dot(H, p)), x0=np.zeros_like(theta), fprime=lambda p: np.dot(H, p) + grad, args=(X, y), bounds=None) # 更新参数 theta += p[0] return theta # 生成随机数据集 n_samples, n_features = 1000, 10 X = np.random.normal(size=(n_samples, n_features)) y = np.random.binomial(1, 0.5, size=n_samples) # 初始化参数 theta_init = np.zeros(n_features) # 求解最大似然估计 theta_ml = trust_region_newton(theta_init, X, y) print("最大似然估计的参数为:", theta_ml)
这段代码主要是用信赖域和局部线性近似方法求解对数几率回归的最大似然估计参数。首先,定义了目标函数negative_log_likelihood,计算给定参数theta下对数几率回归模型的负对数似然函数值。然后,定义了计算梯度的函数gradient和计算海森矩阵的函数hessian。接着,定义了trust_region_newton函数,它使用信赖域方法求解更新量,并更新参数theta。最后,生成了一个随机数据集,初始化参数theta_init,调用trust_region_newton函数求解最大似然估计参数theta_ml,并输出结果。
值得注意的是,此处对数几率回归模型的目标函数与梯度、海森矩阵的计算方式和一般的线性回归不同,需要使用sigmoid函数进行转换。具体来说,模型预测值为sigmoid函数(np.dot(X, theta)),而负对数似然函数则是对y_pred进行了sigmoid函数的逆变换,即-y*np.log(y_pred) - (1-y)*np.log(1-y_pred)。
阅读全文