具体的代码实现是怎么样的呢,基于AVEC2014数据集
时间: 2024-03-14 13:45:07 浏览: 127
数据结构具体代码实现
基于AVEC2014数据集的主动学习抑郁症辅助诊断系统的代码实现比较复杂,需要进行数据预处理、特征提取、模型训练等多个步骤。
下面是一个简单的代码示例,用于说明如何使用Python和Scikit-learn库来实现基于主动学习的抑郁症辅助诊断系统:
``` python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.utils import shuffle
# Load data
data = pd.read_csv('avec2014.csv')
# Preprocess data
data = data.dropna(subset=['transcription'])
data = shuffle(data)
# Split data into train and test sets
train_data, test_data = train_test_split(data, test_size=0.2)
# Define active learning function
def active_learning(X_pool, y_pool, X_test, y_test, n_rounds=10, n_query=10, model=None):
# Initialize model
if model is None:
model = LogisticRegression()
# Initialize active learning loop
for i in range(n_rounds):
# Train model on labeled data
model.fit(X_pool, y_pool)
# Predict on test data
y_pred = model.predict(X_test)
# Evaluate model performance
report = classification_report(y_test, y_pred, output_dict=True)
acc = report['accuracy']
print('Round %d Accuracy: %.4f' % (i+1, acc))
# Query for new samples
idx = np.argpartition(model.predict_proba(X_pool)[:, 1], -n_query)[-n_query:]
X_new, y_new = X_pool[idx], y_pool[idx]
# Remove queried samples from pool
X_pool, y_pool = np.delete(X_pool, idx, axis=0), np.delete(y_pool, idx)
# Add queried samples to labeled data
X_labeled, y_labeled = np.concatenate([X_new, X_pool]), np.concatenate([y_new, y_pool])
return model
# Extract features
vectorizer = TfidfVectorizer(stop_words='english', max_features=1000)
X = vectorizer.fit_transform(train_data['transcription'])
y = train_data['label']
# Split data into labeled and unlabeled sets
X_labeled, X_unlabeled, y_labeled, y_unlabeled = train_test_split(X, y, test_size=0.9)
# Train model using active learning
model = active_learning(X_unlabeled, y_unlabeled, X_test=X, y_test=y, n_rounds=10, n_query=10)
# Evaluate model performance on test data
X_test = vectorizer.transform(test_data['transcription'])
y_test = test_data['label']
y_pred = model.predict(X_test)
report = classification_report(y_test, y_pred)
print(report)
```
这个代码示例使用了一个简单的文本分类模型(逻辑回归),使用TF-IDF算法进行特征提取,并使用主动学习算法选择最具代表性和区分度的样本进行训练。需要注意的是,这个代码示例仅用于说明如何使用Scikit-learn库实现主动学习算法,实际应用中需要根据具体的数据和场景进行修改和扩展。
阅读全文