pycharm读取文件夹的多幅图像配准拼接
时间: 2023-06-24 16:02:54 浏览: 143
要实现读取文件夹中的多幅图像进行配准和拼接,可以使用OpenCV库来进行操作。具体步骤如下:
1.导入必要的库
```python
import cv2
import numpy as np
import glob
```
2.读取文件夹中的图像
```python
images = []
for img_path in glob.glob("path/to/folder/*.jpg"):
img = cv2.imread(img_path)
images.append(img)
```
3.将图像转换为灰度图像
```python
gray_images = []
for img in images:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray_images.append(gray)
```
4.进行图像配准
```python
# 创建ORB特征检测器和描述符
orb = cv2.ORB_create()
# 用ORB计算特征点和描述符
key_points = []
descriptors = []
for img in gray_images:
kp, des = orb.detectAndCompute(img, None)
key_points.append(kp)
descriptors.append(des)
# 创建暴力匹配器
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
# 进行匹配
matches = []
for i in range(len(descriptors)-1):
matches.append(bf.match(descriptors[i], descriptors[i+1]))
# 对匹配结果进行筛选
good_matches = []
for match in matches:
good = []
for m in match:
if m.distance < 100:
good.append(m)
good_matches.append(good)
# 获取匹配的图像点坐标
points1 = []
points2 = []
for i in range(len(good_matches)):
for m in good_matches[i]:
points1.append(key_points[i][m.queryIdx].pt)
points2.append(key_points[i+1][m.trainIdx].pt)
# 将点坐标转换为numpy数组
points1 = np.float32(points1)
points2 = np.float32(points2)
# 计算变换矩阵
M, mask = cv2.findHomography(points2, points1, cv2.RANSAC, 5.0)
```
5.对图像进行透视变换
```python
# 获取第一幅图像的大小
h, w = gray_images[0].shape
# 对除第一幅图像外的其他图像进行透视变换
aligned_images = []
for i in range(1, len(gray_images)):
aligned_img = cv2.warpPerspective(gray_images[i], M, (w, h))
aligned_images.append(aligned_img)
# 将第一幅图像和变换后的其他图像拼接
result = np.hstack([gray_images[0]] + aligned_images)
```
6.显示拼接结果
```python
cv2.imshow("Result", result)
cv2.waitKey()
cv2.destroyAllWindows()
```
阅读全文