sampled_data = df.sample(n=len(df), replace=True, weights=sample_weight)是什么意思

时间: 2023-09-13 10:05:20 浏览: 127
### 回答1: 这个代码行是在对数据进行采样,其中参数n表示采样的数量,replace=True表示采样时可以重复选择已经被选中的样本,weights=sample_weight表示采样时每个样本被选择的概率与其对应的权重数值有关。 ### 回答2: sampled_data = df.sample(n=len(df), replace=True, weights=sample_weight)的意思是从数据框df中根据权重sample_weight进行随机抽样。 其中,n=len(df)表示抽样的样本数与数据框df的行数相同,即抽取全部样本。 replace=True表示允许有重复抽样,即抽取的样本可以重复。 weights=sample_weight表示使用样本权重进行抽样。样本权重是一个与数据框df行数相同长度的列表或数组,用于指定不同样本的抽样概率。抽样时,权重越大的样本被选中的概率越高。 通过这行代码,可以得到一个具有与数据框df相同行数的新数据框sampled_data,其中包含了按照指定权重进行随机抽样得到的样本。这个样本可以用于后续的分析、建模等操作。 ### 回答3: 这行代码的意思是从数据框df中进行随机抽样,抽样数据存储在sampled_data中。其中,抽样的数量等于数据框df的长度,replace=True表示可以重复抽样,weights=sample_weight表示使用权重sample_weight进行抽样。 通常情况下,抽样是为了从总体中获取样本,并基于样本数据来推断总体的特征。这种方法被广泛应用于统计学和数据分析领域。 在这行代码中,使用DataFrame的sample方法来执行抽样操作。设置n=len(df)表示抽取的样本数量与数据框中的行数相同,即全部抽样。replace=True表示允许重复抽样,即相同样本可能会多次出现。weights=sample_weight则表示使用sample_weight作为每个样本被抽到的概率权重,通过设置不同的权重可以对不同样本赋予不同的抽样概率,进而实现更精细化的抽样策略。 总结而言,这行代码的含义是从数据框中进行随机抽样,并将抽样结果存储在sampled_data中,抽样数量为全部数据,且允许重复抽样,使用sample_weight作为抽样概率权重。
阅读全文

相关推荐

class Client(object): def __init__(self, conf, public_key, weights, data_x, data_y): self.conf = conf self.public_key = public_key self.local_model = models.LR_Model(public_key=self.public_key, w=weights, encrypted=True) #print(type(self.local_model.encrypt_weights)) self.data_x = data_x self.data_y = data_y #print(self.data_x.shape, self.data_y.shape) def local_train(self, weights): original_w = weights self.local_model.set_encrypt_weights(weights) neg_one = self.public_key.encrypt(-1) for e in range(self.conf["local_epochs"]): print("start epoch ", e) #if e > 0 and e%2 == 0: # print("re encrypt") # self.local_model.encrypt_weights = Server.re_encrypt(self.local_model.encrypt_weights) idx = np.arange(self.data_x.shape[0]) batch_idx = np.random.choice(idx, self.conf['batch_size'], replace=False) #print(batch_idx) x = self.data_x[batch_idx] x = np.concatenate((x, np.ones((x.shape[0], 1))), axis=1) y = self.data_y[batch_idx].reshape((-1, 1)) #print((0.25 * x.dot(self.local_model.encrypt_weights) + 0.5 * y.transpose() * neg_one).shape) #print(x.transpose().shape) #assert(False) batch_encrypted_grad = x.transpose() * (0.25 * x.dot(self.local_model.encrypt_weights) + 0.5 * y.transpose() * neg_one) encrypted_grad = batch_encrypted_grad.sum(axis=1) / y.shape[0] for j in range(len(self.local_model.encrypt_weights)): self.local_model.encrypt_weights[j] -= self.conf["lr"] * encrypted_grad[j] weight_accumulators = [] #print(models.decrypt_vector(Server.private_key, weights)) for j in range(len(self.local_model.encrypt_weights)): weight_accumulators.append(self.local_model.encrypt_weights[j] - original_w[j]) return weight_accumulators

class HorNet(nn.Module): # HorNet # hornet by iscyy/yoloair def __init__(self, index, in_chans, depths, dim_base, drop_path_rate=0.,layer_scale_init_value=1e-6, gnconv=[ partial(gnconv, order=2, s=1.0/3.0), partial(gnconv, order=3, s=1.0/3.0), partial(gnconv, order=4, s=1.0/3.0), partial(gnconv, order=5, s=1.0/3.0), # GlobalLocalFilter ], ): super().__init__() dims = [dim_base, dim_base * 2, dim_base * 4, dim_base * 8] self.index = index self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers hornet by iscyy/air stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), HorLayerNorm(dims[0], eps=1e-6, data_format="channels_first") ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( HorLayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), ) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiples bind residual blocks dummy dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] if not isinstance(gnconv, list): gnconv = [gnconv, gnconv, gnconv, gnconv] else: gnconv = gnconv assert len(gnconv) == 4 cur = 0 for i in range(4): stage = nn.Sequential( *[HorBlock(dim=dims[i], drop_path=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value, gnconv=gnconv[i]) for j in range(depths[i])]# hornet by iscyy/air ) self.stages.append(stage) cur += depths[i] self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): nn.init.trunc_normal_(m.weight, std=.02) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.downsample_layers[self.index](x) x = self.stages[self.index](x) return x

最新推荐

recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

在TensorFlow 2.0中,`tf.keras.Model.load_weights()` 是一个非常有用的函数,用于加载预先训练好的权重到模型中,以便继续训练或进行预测。然而,在实际操作中,可能会遇到一些报错,本文将针对这些问题提供解决...
recommend-type

MiniGui业务开发基础培训-htk

MiniGui业务开发基础培训-htk
recommend-type

com.harmonyos.exception.DiskReadWriteException(解决方案).md

鸿蒙开发中碰到的报错,问题已解决,写个文档记录一下这个问题及解决方案
recommend-type

网络分析-Wireshark数据包筛选技巧详解及应用实例

内容概要:本文档详细介绍了Wireshark软件中各种数据包筛选规则,主要包括协议、IP地址、端口号、包长以及MAC地址等多个维度的具体筛选方法。同时提供了大量实用案例供读者学习,涵盖HTTP协议相关命令和逻辑条件的综合使用方式。 适合人群:对网络安全或数据分析有一定兴趣的研究者,熟悉基本网络概念和技术的专业人士。 使用场景及目标:适用于需要快速准确捕获特定类型网络流量的情况;如网络安全检测、性能优化分析、教学演示等多种实际应用场景。 阅读建议:本资料侧重于实操技能提升,在学习时最好配合实际操作练习效果更佳。注意掌握不同类型条件组合的高级用法,增强问题解决能力。
recommend-type

BottleJS快速入门:演示JavaScript依赖注入优势

资源摘要信息:"BottleJS是一个轻量级的依赖项注入容器,用于JavaScript项目中,旨在减少导入依赖文件的数量并优化代码结构。该项目展示BottleJS在前后端的应用,并通过REST API演示其功能。" BottleJS Playgound 概述: BottleJS Playgound 是一个旨在演示如何在JavaScript项目中应用BottleJS的项目。BottleJS被描述为JavaScript世界中的Autofac,它是依赖项注入(DI)容器的一种实现,用于管理对象的创建和生命周期。 依赖项注入(DI)的基本概念: 依赖项注入是一种设计模式,允许将对象的依赖关系从其创建和维护的代码中分离出来。通过这种方式,对象不会直接负责创建或查找其依赖项,而是由外部容器(如BottleJS)来提供这些依赖项。这样做的好处是降低了模块间的耦合,提高了代码的可测试性和可维护性。 BottleJS 的主要特点: - 轻量级:BottleJS的设计目标是尽可能简洁,不引入不必要的复杂性。 - 易于使用:通过定义服务和依赖关系,BottleJS使得开发者能够轻松地管理大型项目中的依赖关系。 - 适合前后端:虽然BottleJS最初可能是为前端设计的,但它也适用于后端JavaScript项目,如Node.js应用程序。 项目结构说明: 该仓库的src目录下包含两个子目录:sans-bottle和bottle。 - sans-bottle目录展示了传统的方式,即直接导入依赖并手动协调各个部分之间的依赖关系。 - bottle目录则使用了BottleJS来管理依赖关系,其中bottle.js文件负责定义服务和依赖关系,为项目提供一个集中的依赖关系源。 REST API 端点演示: 为了演示BottleJS的功能,该项目实现了几个简单的REST API端点。 - GET /users:获取用户列表。 - GET /users/{id}:通过给定的ID(范围0-11)获取特定用户信息。 主要区别在用户路由文件: 该演示的亮点在于用户路由文件中,通过BottleJS实现依赖关系的注入,我们可以看到代码的组织和结构比传统方式更加清晰和简洁。 BottleJS 和其他依赖项注入容器的比较: - BottleJS相比其他依赖项注入容器如InversifyJS等,可能更轻量级,专注于提供基础的依赖项管理和注入功能。 - 它的设计更加直接,易于理解和使用,尤其适合小型至中型的项目。 - 对于需要高度解耦和模块化的大规模应用,可能需要考虑BottleJS以外的解决方案,以提供更多的功能和灵活性。 在JavaScript项目中应用依赖项注入的优势: - 可维护性:通过集中管理依赖关系,可以更容易地理解和修改应用的结构。 - 可测试性:依赖项的注入使得创建用于测试的mock依赖关系变得简单,从而方便单元测试的编写。 - 模块化:依赖项注入鼓励了更好的模块化实践,因为模块不需关心依赖的来源,只需负责实现其定义的接口。 - 解耦:模块之间的依赖关系被清晰地定义和管理,减少了直接耦合。 总结: BottleJS Playgound 项目提供了一个生动的案例,说明了如何在JavaScript项目中利用依赖项注入模式改善代码质量。通过该项目,开发者可以更深入地了解BottleJS的工作原理,以及如何将这一工具应用于自己的项目中,从而提高代码的可维护性、可测试性和模块化程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【版本控制】:R语言项目中Git与GitHub的高效应用

![【版本控制】:R语言项目中Git与GitHub的高效应用](https://opengraph.githubassets.com/2abf032294b9f2a415ddea58f5fde6fcb018b57c719dfc371bf792c251943984/isaacs/github/issues/37) # 1. 版本控制与R语言的融合 在信息技术飞速发展的今天,版本控制已成为软件开发和数据分析中不可或缺的环节。特别是对于数据科学的主流语言R语言,版本控制不仅帮助我们追踪数据处理的历史,还加强了代码共享与协作开发的效率。R语言与版本控制系统的融合,特别是与Git的结合使用,为R语言项
recommend-type

RT-DETR如何实现在实时目标检测中既保持精度又降低计算成本?请提供其技术实现的详细说明。

为了理解RT-DETR如何在实时目标检测中保持精度并降低计算成本,我们必须深入研究其架构优化和技术细节。RT-DETR通过融合CNN与Transformer的优势,提出了一种混合编码器结构,这种结构采用了尺度内交互(AIFI)和跨尺度融合(CCFM)策略来提取和融合多尺度图像特征,这些特征能够提供丰富的视觉上下文信息,从而提升了模型的检测精度。 参考资源链接:[RT-DETR:实时目标检测中的新胜者](https://wenku.csdn.net/doc/1ehyj4a8z2?spm=1055.2569.3001.10343) 在编码器阶段,RT-DETR使用主干网络提取图像特征,然后通过
recommend-type

vConsole插件使用教程:输出与复制日志文件

资源摘要信息:"vconsole-outputlog-plugin是一个JavaScript插件,它能够在vConsole环境中输出日志文件,并且支持将日志复制到剪贴板或下载。vConsole是一个轻量级、可扩展的前端控制台,通常用于移动端网页的调试。该插件的安装依赖于npm,即Node.js的包管理工具。安装完成后,通过引入vConsole和vConsoleOutputLogsPlugin来初始化插件,之后即可通过vConsole输出的console打印信息进行日志的复制或下载操作。这在进行移动端调试时特别有用,可以帮助开发者快速获取和分享调试信息。" 知识点详细说明: 1. vConsole环境: vConsole是一个专为移动设备设计的前端调试工具。它模拟了桌面浏览器的控制台,并添加了网络请求、元素选择、存储查看等功能。vConsole可以独立于原生控制台使用,提供了一个更为便捷的方式来监控和调试Web页面。 2. 日志输出插件: vconsole-outputlog-plugin是一个扩展插件,它增强了vConsole的功能,使得开发者不仅能够在vConsole中查看日志,还能将这些日志方便地输出、复制和下载。这样的功能在移动设备上尤为有用,因为移动设备的控制台通常不易于使用。 3. npm安装: npm(Node Package Manager)是Node.js的包管理器,它允许用户下载、安装、管理各种Node.js的包或库。通过npm可以轻松地安装vconsole-outputlog-plugin插件,只需在命令行执行`npm install vconsole-outputlog-plugin`即可。 4. 插件引入和使用: - 首先创建一个vConsole实例对象。 - 然后创建vConsoleOutputLogsPlugin对象,它需要一个vConsole实例作为参数。 - 使用vConsole对象的实例,就可以在其中执行console命令,将日志信息输出到vConsole中。 - 插件随后能够捕获这些日志信息,并提供复制到剪贴板或下载的功能。 5. 日志操作: - 复制到剪贴板:在vConsole界面中,通常会有“复制”按钮,点击即可将日志信息复制到剪贴板,开发者可以粘贴到其他地方进行进一步分析或分享。 - 下载日志文件:在某些情况下,可能需要将日志信息保存为文件,以便离线查看或作为报告的一部分。vconsole-outputlog-plugin提供了将日志保存为文件并下载的功能。 6. JavaScript标签: 该插件是使用JavaScript编写的,因此它与JavaScript紧密相关。JavaScript是一种脚本语言,广泛用于网页的交互式内容开发。此插件的开发和使用都需要一定的JavaScript知识,包括对ES6(ECMAScript 2015)版本规范的理解和应用。 7. 压缩包子文件: vconsole-outputlog-plugin-main文件名可能是指该插件的压缩包或分发版本,通常包含插件的源代码、文档和可能的配置文件。开发者可以通过该文件名在项目中正确地引用和使用插件。 通过掌握这些知识点,开发者可以有效地在vConsole环境中使用vconsole-outputlog-plugin插件,提高移动端网页的调试效率和体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依