Java代码实现最近对问题(分治法) int ClosestPoints (S) / / S 为平面上 n 个点的坐标组成的集合 { 1.if ( n < 2 ) return ∞; 2.m = S 中各点 x 坐标的中位数; 3.构造 S1 和 S2 ,使得 S1 中点的 x 坐标小于 m, S2 中点的 x 坐标大于 m; 4.d1 = ClosestPoints (S1 ) ; d2 = ClosestPoints( S2) ; 5.d = min( d1, d2 ) ; 6 .构造 P1 和 P2 ,使得 P1 是 S1 中点的 x 坐标与 m 的距离小于 d 的点集, P2 是 S2 中点的 x 坐标与 m 的距离小于 d 的点集; 7.将 P1 和 P2 中的点按 y 坐标升序排列; 8.对 P1 中的每一个点 p ,在 P2 中查找与点 p 的 y 坐标小于 d 的点,并求出其中的最 小 距离 d′ ; 9.return min( d, d′ ) ; }

时间: 2024-03-07 21:50:02 浏览: 81
以下是Java代码实现最近对问题的分治算法: ```java public class ClosestPoints { class Point { double x, y; public Point(double x, double y) { this.x = x; this.y = y; } } // 计算两点之间的距离 private double dist(Point p1, Point p2) { double dx = p1.x - p2.x; double dy = p1.y - p2.y; return Math.sqrt(dx * dx + dy * dy); } // 分治求解最近点对问题 private double closestPointsRec(Point[] points, int start, int end) { if (end - start < 2) { // 如果只有一个点或没有点,则距离为无穷大 return Double.POSITIVE_INFINITY; } else if (end - start == 2) { // 如果只有两个点,则直接计算距离 return dist(points[start], points[start + 1]); } // 计算中位数 int mid = (start + end) / 2; double midX = points[mid].x; // 分别对左右两个子集递归求解最近点对距离 double d1 = closestPointsRec(points, start, mid); double d2 = closestPointsRec(points, mid, end); double d = Math.min(d1, d2); // 将距离中位数线距离小于d的点放入集合P中 List<Point> P = new ArrayList<>(); for (int i = start; i < end; i++) { if (Math.abs(points[i].x - midX) < d) { P.add(points[i]); } } // 将集合P中的点按照y坐标升序排序 Collections.sort(P, (p1, p2) -> Double.compare(p1.y, p2.y)); // 查找两个子集中的最近点对距离 for (int i = 0; i < P.size(); i++) { for (int j = i + 1; j < P.size() && P.get(j).y - P.get(i).y < d; j++) { double dist = dist(P.get(i), P.get(j)); d = Math.min(d, dist); } } return d; } // 对外暴露的接口 public double closestPoints(Point[] points) { Arrays.sort(points, (p1, p2) -> Double.compare(p1.x, p2.x)); return closestPointsRec(points, 0, points.length); } } ``` 其中,Point类表示平面上的点,dist方法计算两个点之间的距离,closestPointsRec方法为递归求解最近点对距离的函数,closestPoints方法为对外暴露的接口。
阅读全文

相关推荐

最新推荐

recommend-type

算法课程设计——分治法(java实现)

算法课程设计——分治法(java实现) 本课程设计报告的主要内容是对分治法的详细分析和讲解,并使用 Java 语言对其进行实现。分治法是一种经典的排序算法,它的主要思想是将问题分解为两个子序列,然后对子序列进行...
recommend-type

Java基于分治算法实现的棋盘覆盖问题示例

Java基于分治算法实现的棋盘覆盖问题示例 本文主要介绍了Java基于分治算法实现的棋盘覆盖问题,简单描述了棋盘覆盖问题,并结合具体实例形式分析了Java基于分治算法实现棋盘覆盖问题的相关操作技巧。 知识点一:...
recommend-type

C语言之整数划分问题(递归法)实例代码

问题的核心是找到将一个正整数n分解为若干个正整数之和的所有可能方式,而这些正整数的和必须等于n本身。整数划分问题可以采用递归方法来解决,因为它具有自相似的性质,即可以通过更小规模的问题来推导出原问题的解...
recommend-type

java另类分治法凸包问题

在这个问题中,我们采用了一种基于分治法的创新方法来解决凸包问题,其核心思想是通过不断旋转点集,找到当前点集合的左边点,最终形成一个顺时针排列的凸包。 首先,我们理解分治法的基本概念。分治法是一种将大...
recommend-type

用分治算法解平面最接近点对问题

【平面最接近点对问题】是指在平面上给定n个点,寻找其中距离最近的两点。这是一个经典的计算几何问题,对于大规模数据处理时,直接的暴力求解方法(检查所有点对)效率低下。 **分治算法**是解决此类问题的一种...
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。