yolov8s.engine可以直接用于C++推理吗?
时间: 2023-07-30 10:08:03 浏览: 192
是的,可以使用yolov8s.engine文件进行C++推理。在C++中,您需要使用TensorRT C++ API来加载和运行yolov8s.engine文件。以下是一个简单的TensorRT C++推理示例,用于加载和运行yolov8s.engine文件:
```c++
#include <iostream>
#include <fstream>
#include <sstream>
#include <cuda_runtime_api.h>
#include "NvInfer.h"
using namespace nvinfer1;
int main()
{
// Load the yolov8s.engine file
std::string engine_file_path = "yolov8s.engine";
std::ifstream engine_file(engine_file_path, std::ios::binary);
engine_file.seekg(0, std::ios::end);
const size_t engine_file_size = engine_file.tellg();
engine_file.seekg(0, std::ios::beg);
std::vector<char> engine_data(engine_file_size);
engine_file.read(engine_data.data(), engine_file_size);
// Create a TensorRT runtime instance
IRuntime* runtime = createInferRuntime(gLogger);
// Create a TensorRT engine instance from the engine file
ICudaEngine* engine = runtime->deserializeCudaEngine(engine_data.data(), engine_data.size(), nullptr);
// Create a TensorRT execution context instance from the engine instance
IExecutionContext* context = engine->createExecutionContext();
// Allocate input and output device buffers
const int input_size = 416 * 416 * 3;
float* input_buffer = nullptr;
cudaMalloc(&input_buffer, input_size * sizeof(float));
const int output_size = 10647 * (5 + 80);
float* output_buffer = nullptr;
cudaMalloc(&output_buffer, output_size * sizeof(float));
// Create a TensorRT CUDA stream instance
cudaStream_t stream;
cudaStreamCreate(&stream);
// Copy input data to the device buffer
cudaMemcpyAsync(input_buffer, input_data, input_size * sizeof(float), cudaMemcpyHostToDevice, stream);
// Execute inference on the device
void* bindings[2] = {input_buffer, output_buffer};
context->enqueueV2(bindings, stream, nullptr);
// Copy output data from the device buffer
float* output_data = new float[output_size];
cudaMemcpyAsync(output_data, output_buffer, output_size * sizeof(float), cudaMemcpyDeviceToHost, stream);
// Print the output data
for (int i = 0; i < output_size; i++)
{
std::cout << output_data[i] << std::endl;
}
// Free the device buffers
cudaFree(input_buffer);
cudaFree(output_buffer);
// Destroy the TensorRT objects
context->destroy();
engine->destroy();
runtime->destroy();
return 0;
}
```
请注意,此代码仅提供了一个TensorRT C++推理的基本示例,您需要根据您的具体情况进行修改和优化。
阅读全文