transformer代码实现pytorch
时间: 2023-04-29 11:04:19 浏览: 349
PyTorch是一个开源深度学习框架,可以使用它来实现Transformer模型。以下是一个简单的Transformer代码实现:
```python
import torch
import torch.nn as nn
class Transformer(nn.Module):
def __init__(self, d_model, nhead, num_layers):
super(Transformer, self).__init__()
self.encoder = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model, nhead), num_layers)
self.decoder = nn.TransformerDecoder(nn.TransformerDecoderLayer(d_model, nhead), num_layers)
self.src_mask = None
self.tgt_mask = None
def forward(self, src, tgt):
if self.src_mask is None or self.src_mask.size(0) != len(src):
device = src.device
mask = self._generate_square_subsequent_mask(len(src)).to(device)
self.src_mask = mask
if self.tgt_mask is None or self.tgt_mask.size(0) != len(tgt):
device = tgt.device
mask = self._generate_square_subsequent_mask(len(tgt)).to(device)
self.tgt_mask = mask
src = self.encoder(src, self.src_mask)
tgt = self.decoder(tgt, src, self.tgt_mask)
return tgt
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
```
这是一个简单的Transformer代码实现。其中d_model表示模型的维度,nhead表示多头注意力中的头数,num_layers表示Transformer中的层数。
阅读全文