Python3语言实现基于贪心策略的q-learning算法
时间: 2023-07-11 18:45:04 浏览: 131
下面是一个简单的Python3代码示例,实现基于贪心策略的Q-Learning算法:
```python
import numpy as np
# 定义九宫格游戏的状态和动作
states = ['1', '2', '3', '4', '5', '6', '7', '8', '9']
actions = ['up', 'down', 'left', 'right']
# 定义奖励和学习率等参数
rewards = np.array([
[-1, -1, -1, -1, 0, -1, -1, 0, -1],
[-1, -1, -1, 0, -1, 0, -1, -1, -1],
[-1, -1, -1, 0, -1, -1, -1, 0, -1],
[-1, 0, 0, -1, 0, -1, -1, -1, -1],
[0, -1, -1, 0, -1, 0, -1, -1, 0],
[-1, 0, -1, -1, 0, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, -1, 0, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, 0, -1, -1, -1, -1]
])
gamma = 0.8
alpha = 0.5
epsilon = 0.1
# 初始化Q表
q_table = np.zeros((len(states), len(actions)))
# 训练Q-Learning算法
for i in range(1000):
state = np.random.randint(0, len(states))
while state != 6:
# 选择动作
if np.random.uniform() < epsilon:
action = np.random.randint(0, len(actions))
else:
action = np.argmax(q_table[state])
# 更新Q值
next_state = np.where(rewards[state, action] >= 0)[0][0]
q_table[state, action] = (1 - alpha) * q_table[state, action] + alpha * (rewards[state, action] + gamma * np.max(q_table[next_state]))
state = next_state
# 测试Q-Learning算法
state = 0
while state != 6:
action = np.argmax(q_table[state])
next_state = np.where(rewards[state, action] >= 0)[0][0]
state = next_state
print('Move to state', states[state])
```
在这个示例中,我们定义了九宫格游戏的状态和动作,并设置了奖励和学习率等参数。然后,初始化Q表,并使用1000次训练迭代来更新Q值。在每一次迭代中,机器人会选择一个动作,并根据当前状态和选择的动作更新Q值。最后,我们使用Q表来测试算法的性能,输出机器人移动到的最终状态。
阅读全文