q-learning实现cliffwalking-v0代码python
时间: 2023-09-15 22:17:56 浏览: 157
以下是使用Q-learning算法实现Cliff Walking游戏的Python代码:
```python
import numpy as np
import gym
env = gym.make("CliffWalking-v0")
num_states = env.observation_space.n
num_actions = env.action_space.n
Q = np.zeros((num_states, num_actions))
num_episodes = 5000
epsilon = 0.1
alpha = 0.5
gamma = 0.99
for i in range(num_episodes):
observation = env.reset()
done = False
while not done:
if np.random.uniform() < epsilon:
action = env.action_space.sample()
else:
action = np.argmax(Q[observation, :])
next_observation, reward, done, info = env.step(action)
Q[observation, action] = Q[observation, action] + alpha * (reward + gamma * np.max(Q[next_observation, :]) - Q[observation, action])
observation = next_observation
print("Q-table:")
print(Q)
def play(Q):
observation = env.reset()
done = False
while not done:
env.render()
action = np.argmax(Q[observation, :])
observation, reward, done, info = env.step(action)
env.render()
print("Reward:", reward)
play(Q)
```
请注意,这段代码使用OpenAI Gym库中的Cliff Walking环境,并使用Q-learning算法实现Agent的决策过程。Agent的决策基于Q值函数,使用epsilon贪心策略探索和exploitation。代码训练Q表格并输出结果,最后演示游戏并输出最终的奖励。
阅读全文