np.array、MyDataset、load_data()、np.array(df)、args.dimension、train_model
时间: 2023-04-09 17:00:55 浏览: 93
这些都是与机器学习相关的概念和函数,可以用于数据处理和模型训练。np.array是numpy库中用于创建数组的函数,MyDataset是自定义的数据集类,load_data()是用于加载数据的函数,np.array(df)是将数据框转换为数组的函数,args.dimension是指定模型的维度,train_model是用于训练模型的函数。
相关问题
def load_data(file_name): df = pd.read_csv('data/new_data/' + file_name, encoding='gbk') columns = df.columns df.fillna(df.mean(), inplace=True) return df class MyDataset(Dataset): def __init__(self, data): self.data = data def __getitem__(self, item): return self.data[item] def __len__(self): return len(self.data) def nn_seq_us(B): print('data processing...') dataset = load_data() # split train = dataset[:int(len(dataset) * 0.6)] val = dataset[int(len(dataset) * 0.6):int(len(dataset) * 0.8)] test = dataset[int(len(dataset) * 0.8):len(dataset)] m, n = np.max(train[train.columns[1]]), np.min(train[train.columns[1]]) def process(data, batch_size): load = data[data.columns[1]] load = load.tolist() data = data.values.tolist() load = (load - n) / (m - n) seq = [] for i in range(len(data) - 24): train_seq = [] train_label = [] for j in range(i, i + 24): x = [load[j]] train_seq.append(x) # for c in range(2, 8): # train_seq.append(data[i + 24][c]) train_label.append(load[i + 24]) train_seq = torch.FloatTensor(train_seq) train_label = torch.FloatTensor(train_label).view(-1) seq.append((train_seq, train_label)) # print(seq[-1]) seq = MyDataset(seq) seq = DataLoader(dataset=seq, batch_size=batch_size, shuffle=False, num_workers=0, drop_last=True) return seq Dtr = process(train, B) Val = process(val, B) Dte = process(test, B) return Dtr, Val, Dte, m, n这是关于什么的代码
这是一个关于神经网络序列预测的代码,它将数据集加载并进行预处理,然后将其分为训练、验证和测试集。代码中的 load_data 函数用于加载数据文件,MyDataset 类用于创建数据集对象,nn_seq_us 函数则用于对数据进行预处理并将其转换为 PyTorch 数据加载器对象。最后,该函数返回训练、验证和测试数据集对象,以及数据的最大值和最小值。
class MyDataset(Dataset): def _init__(self, train_path): self.train_path = train_path self.image_path = os.path.join(train_path, 'image') self.label_path = os.path.join(train_path, "label") self.image_path_list = os.listdir(self.image_path) def __getitem__(self, index) -> T_co: image_name = self.image_path_list[index] image_path = os.path.join(self.image_path, image_name) img = cv.imread(image_path) label_name = 'txt'.join(image_name.rsplit(image_name.split('. ')[-1], 1)) label_path = os.path.join(self.label_path, label_name) label = read_label(label_path) return img,label def __len__(self): return Len(self.image_path_list) img, label = my_dataset[data_index]这段代码中img, label = my_dataset[data_index]为什么可以这样用
`img, label = my_dataset[data_index]` 这行代码使用了 Python 的序列解包(sequence unpacking)功能,将 `my_dataset[data_index]` 返回的元组解包成 `img` 和 `label` 两个变量。
在这里,`my_dataset` 是 MyDataset 类的一个实例,`data_index` 是一个整数,它作为索引被传递给 `my_dataset` 的 `__getitem__` 方法。由于 `__getitem__` 方法返回的是一个元组,因此可以使用序列解包将其拆分为两个变量 `img` 和 `label`。
最终,`img` 和 `label` 分别表示了该数据集中第 `data_index` 个图像的图像数据和标签数据。这样就可以使用这些数据进行训练或测试了。
阅读全文