请使用unet项目中的典型代码结构,通过代码的形式向我介绍各部分,从前向传播函数的定义过程开始如 def forward(self, x):
时间: 2023-03-19 20:22:59 浏览: 130
函数传递的例子
好的,下面是使用PyTorch实现的Unet模型的典型代码结构:
```
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class Unet(nn.Module):
def __init__(self, in_channels=3, out_channels=1, features=[64, 128, 256, 512]):
super(Unet, self).__init__()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# 下采样
for feature in features:
self.downs.append(DoubleConv(in_channels, feature))
in_channels = feature
# 上采样
for feature in reversed(features):
self.ups.append(
nn.ConvTranspose2d(feature*2, feature, kernel_size=2, stride=2)
)
self.ups.append(DoubleConv(feature*2, feature))
self.bottleneck = DoubleConv(features[-1], features[-1]*2)
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)
def forward(self, x):
skip_connections = []
for down in self.downs:
x = down(x)
skip_connections.append(x)
x = self.pool(x)
x = self.bottleneck(x)
skip_connections = skip_connections[::-1]
for idx in range(0, len(self.ups), 2):
x = self.ups[idx](x)
skip_connection = skip_connections[idx//2]
if x.shape != skip_connection.shape:
x = nn.functional.interpolate(x, size=skip_connection.shape[2:], mode='bilinear', align_corners=True)
concat_skip = torch.cat((skip_connection, x), dim=1)
x = self.ups[idx+1](concat_skip)
return self.final_conv(x)
```
代码的解释如下:
1. `DoubleConv`是一个由两个卷积层和批量归一化层组成的模块,它用于下采样和上采样中的每个层。在构造函数中,我们指定输入通道数和输出通道数,然后创建一个包含两个卷积层和批量归一化层的序列。在正向传播函数中,我们只需将输入张量传递给这个序列,并返回输出张量。
2. `Unet`类是Unet模型的主要部分。在构造函数中,我们首先创建两个模块列表`self.ups`和`self.downs`,它们分别用于存储下采样和上采样的模块。我们还创建一个最大池化层`self.pool`,用于下采样中的每个层。`features`参数是
阅读全文