上面代码如此报错:错误使用 trainNetwork 训练序列具有特征维度 1078 30,但输入层需要特征维度为 10 的序列。
时间: 2024-03-16 22:44:15 浏览: 130
非常抱歉,我的代码中确实有一个错误。根据你的数据集描述,每个时间步长有 11 个特征,但我的代码中使用了 `numFeatures = 1`,导致了这个问题。
在这里我提供一个修改后的代码,其中 `numFeatures` 被修改为 11:
```matlab
numFeatures = 11;
numHiddenUnits = 200;
numClasses = 3;
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'ExecutionEnvironment','cpu', ...
'MaxEpochs',100, ...
'MiniBatchSize',128, ...
'GradientThreshold',1, ...
'Shuffle','never', ...
'Verbose',0);
net = trainNetwork(X_train, categorical(Y_train), layers, options);
YPred = classify(net, X_test);
```
这样应该就能够解决之前的问题了。如果还有其他问题,请随时告诉我。
相关问题
上述代码报错:错误使用 trainNetwork 训练序列具有特征维度 32329 30,但输入层需要特征维度为 10 的序列。
这个错误是因为序列长度为30的数据中,每个序列由10个特征组成。而在你读入数据并将其转换为适合LSTM模型的格式的时候,代码中指定了numFeatures为10,但是读入的csv文件中每行数据却有11列,这导致了数据格式不符合LSTM模型的要求。
因此,你需要检查一下你的csv文件,确保每行数据只有10个特征参数,然后再运行代码。
如果你的csv文件确实有11列,那么你需要修改读入数据的代码,只读入前10列作为特征参数,最后一列作为类别。你可以这样修改代码:
```matlab
% 读入数据
data = csvread('data.csv');
% 将数据转换为LSTM模型的格式
seqLength = 30; % 序列长度
numFeatures = 10; % 特征数
numClasses = 3; % 类别数
dataX = zeros(size(data, 1) - seqLength + 1, seqLength, numFeatures);
dataY = zeros(size(data, 1) - seqLength + 1, 1);
for i = 1:size(dataX, 1)
dataX(i, :, :) = data(i:i+seqLength-1, 1:numFeatures);
class = data(i+seqLength-1, numFeatures+1);
dataY(i) = class;
end
% 将类别向量转换为分类响应的向量
dataY = categorical(dataY);
% 划分训练集和测试集
trainSplit = 0.8;
trainX = dataX(1:round(trainSplit*size(dataX,1)), :, :);
trainY = dataY(1:round(trainSplit*size(dataY,1)), :);
testX = dataX(round(trainSplit*size(dataX,1))+1:end, :, :);
testY = data(round(trainSplit*size(dataY,1))+1:end, numFeatures+1:end);
% 设置LSTM模型的参数
numHiddenUnits = 100;
numEpochs = 10;
miniBatchSize = 64;
% 创建LSTM模型
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits, 'OutputMode', 'last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'MaxEpochs', numEpochs, ...
'MiniBatchSize', miniBatchSize, ...
'Plots', 'training-progress');
% 训练LSTM模型
lstmModel = trainNetwork(trainX, trainY, layers, options);
% 使用测试集评估模型
YPred = classify(lstmModel, testX);
accuracy = sum(YPred == categorical(testY)) / numel(testY);
fprintf('Accuracy: %.2f%%\n', accuracy * 100);
```
希望这次能够解决你的问题!
仍然报错:错误使用 trainNetwork 训练序列具有特征维度 1078 30,但输入层需要特征维度为 11 的序列。我重新描述需求。有一个数据大小为40440*11的矩阵,要每30*10个数据作为输入,第11列作为输出,用于分类输出
非常抱歉,我之前的回答仍然有误。根据你的需求,每个时间步长有 11 个特征,而不是 1078 个特征。因此,需要将 `numFeatures` 设置为 10,同时需要将输入数据重新整理为每行 30*10 个元素。
修改后的代码如下:
```matlab
numFeatures = 10;
numHiddenUnits = 200;
numClasses = 3;
X_train_reshape = reshape(X_train', [10, 30, size(X_train, 1)/30]);
X_train_reshape = permute(X_train_reshape, [2, 1, 3]);
X_test_reshape = reshape(X_test', [10, 30, size(X_test, 1)/30]);
X_test_reshape = permute(X_test_reshape, [2, 1, 3]);
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'ExecutionEnvironment','cpu', ...
'MaxEpochs',100, ...
'MiniBatchSize',128, ...
'GradientThreshold',1, ...
'Shuffle','never', ...
'Verbose',0);
net = trainNetwork(X_train_reshape, categorical(Y_train), layers, options);
YPred = classify(net, X_test_reshape);
```
请注意,我在上面的代码中使用了 `reshape` 和 `permute` 函数来重新整理输入数据。`reshape` 函数将每行 10*30 个元素重新排列为 10 行,30 列,然后 `permute` 函数将第一维和第二维交换,以便输入到网络中。
如果还有问题,请告诉我。
阅读全文