用单链表存储一元多项式,并实现两个多项式的相乘运算

时间: 2024-05-22 11:12:02 浏览: 16
思路: 1. 定义单链表节点结构体,包含多项式的系数和指数。 2. 定义单链表结构体,包含头节点指针和链表长度。 3. 实现多项式的输入函数,通过循环输入系数和指数,并在单链表中插入新节点。 4. 实现多项式的输出函数,通过遍历单链表输出每一项的系数和指数。 5. 实现两个多项式相乘的函数,通过遍历两个多项式的单链表,分别取出每一项的系数和指数,相乘后插入新链表中。需要注意的是,相同指数的项需要合并系数。 6. 在主函数中调用输入函数输入两个多项式,输出函数输出两个多项式,相乘函数计算两个多项式的乘积并输出。 代码实现:
相关问题

单链表存储一元多项式,求两个多项式的加减乘法运算

一元多项式可以表示为: $P(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0$ 其中,$a_n, a_{n-1}, ..., a_1, a_0$ 为系数,$x$ 为未知数,$n$ 为次数。 我们可以用单链表来存储一元多项式,每个节点存储一个系数和次数。 接下来,分别介绍一下两个多项式的加减乘法运算。 ## 多项式的加法 两个多项式相加,只需要将相同次数的系数相加即可。 具体步骤如下: 1. 分别遍历两个单链表,将相同次数的系数相加。 2. 如果某个链表已经遍历完,将另一个链表剩余的项添加到结果链表中。 3. 如果最高次数的系数为0,则删除该节点。 下面是 C++ 代码实现: ```cpp struct Node { int coef; // 系数 int exp; // 次数 Node* next; }; Node* addPolynomial(Node* p1, Node* p2) { Node* result = new Node(); Node* tail = result; while (p1 && p2) { if (p1->exp == p2->exp) { int sum = p1->coef + p2->coef; if (sum != 0) { Node* node = new Node(); node->coef = sum; node->exp = p1->exp; tail->next = node; tail = node; } p1 = p1->next; p2 = p2->next; } else if (p1->exp > p2->exp) { Node* node = new Node(); node->coef = p1->coef; node->exp = p1->exp; tail->next = node; tail = node; p1 = p1->next; } else { Node* node = new Node(); node->coef = p2->coef; node->exp = p2->exp; tail->next = node; tail = node; p2 = p2->next; } } while (p1) { Node* node = new Node(); node->coef = p1->coef; node->exp = p1->exp; tail->next = node; tail = node; p1 = p1->next; } while (p2) { Node* node = new Node(); node->coef = p2->coef; node->exp = p2->exp; tail->next = node; tail = node; p2 = p2->next; } Node* temp = result; result = result->next; delete temp; return result; } ``` ## 多项式的减法 两个多项式相减,只需要将相同次数的系数相减即可。 具体步骤如下: 1. 分别遍历两个单链表,将相同次数的系数相减。 2. 如果某个链表已经遍历完,将另一个链表剩余的项添加到结果链表中。 3. 如果最高次数的系数为0,则删除该节点。 下面是 C++ 代码实现: ```cpp Node* subPolynomial(Node* p1, Node* p2) { Node* result = new Node(); Node* tail = result; while (p1 && p2) { if (p1->exp == p2->exp) { int diff = p1->coef - p2->coef; if (diff != 0) { Node* node = new Node(); node->coef = diff; node->exp = p1->exp; tail->next = node; tail = node; } p1 = p1->next; p2 = p2->next; } else if (p1->exp > p2->exp) { Node* node = new Node(); node->coef = p1->coef; node->exp = p1->exp; tail->next = node; tail = node; p1 = p1->next; } else { Node* node = new Node(); node->coef = -p2->coef; node->exp = p2->exp; tail->next = node; tail = node; p2 = p2->next; } } while (p1) { Node* node = new Node(); node->coef = p1->coef; node->exp = p1->exp; tail->next = node; tail = node; p1 = p1->next; } while (p2) { Node* node = new Node(); node->coef = -p2->coef; node->exp = p2->exp; tail->next = node; tail = node; p2 = p2->next; } Node* temp = result; result = result->next; delete temp; return result; } ``` ## 多项式的乘法 两个多项式相乘,需要将每一项都相乘,最后将所有结果相加。 具体步骤如下: 1. 遍历第一个链表,取出每一项。 2. 遍历第二个链表,取出每一项。 3. 将两个节点的系数和次数相乘,得到新的节点。 4. 将新的节点插入结果链表中。 5. 重复以上步骤,直到第一个链表遍历完。 下面是 C++ 代码实现: ```cpp Node* mulPolynomial(Node* p1, Node* p2) { if (!p1 || !p2) { return nullptr; } Node* result = new Node(); while (p1) { Node* p = p2; Node* tail = result; while (p) { int coef = p1->coef * p->coef; int exp = p1->exp + p->exp; Node* node = new Node(); node->coef = coef; node->exp = exp; while (tail->next && tail->next->exp > exp) { tail = tail->next; } if (tail->next && tail->next->exp == exp) { tail->next->coef += coef; } else { node->next = tail->next; tail->next = node; } p = p->next; } p1 = p1->next; } Node* temp = result; result = result->next; delete temp; return result; } ``` 以上就是单链表存储一元多项式,以及两个多项式的加减乘法运算的实现。

C语言编写一个程序实现两个一元多项式相乘。

实现两个一元多项式相乘的程序可以按照以下步骤进行: 1. 定义一个结构体表示多项式,包括系数和指数两个成员变量。 2. 定义一个函数用来输入多项式,输入格式如下: ``` 输入项数n,接下来n行每行输入一个系数和指数 ``` 3. 定义一个函数用来输出多项式,输出格式如下: ``` 输出项数n,接下来n行每行输出一个系数和指数 ``` 4. 定义一个函数用来实现两个多项式的相乘,具体步骤如下: - 定义一个数组,用来存储相乘后的结果。 - 遍历第一个多项式的每一项,再遍历第二个多项式的每一项,将它们的系数相乘并将结果加到数组中相应的位置。 - 将数组中的结果组合成一个新的多项式并返回。 5. 在主函数中调用上述函数实现多项式相乘,并输出结果。 下面是示例代码: ```c #include <stdio.h> #include <stdlib.h> #define MAX_TERMS 100 // 定义结构体表示多项式 typedef struct { float coef; // 系数 int exp; // 指数 } Polynomial; // 输入多项式 void input(Polynomial poly[], int *n) { printf("请输入项数:"); scanf("%d", n); printf("请输入每一项的系数和指数:\n"); for (int i = 0; i < *n; i++) { scanf("%f %d", &poly[i].coef, &poly[i].exp); } } // 输出多项式 void output(Polynomial poly[], int n) { printf("多项式为:\n"); printf("%d\n", n); for (int i = 0; i < n; i++) { printf("%.2f %d\n", poly[i].coef, poly[i].exp); } } // 实现两个多项式的相乘 Polynomial multiply(Polynomial poly1[], int n1, Polynomial poly2[], int n2) { Polynomial result[MAX_TERMS]; // 存储结果的数组 int count = 0; // 记录结果中的项数 for (int i = 0; i < n1; i++) { for (int j = 0; j < n2; j++) { result[count].coef = poly1[i].coef * poly2[j].coef; result[count].exp = poly1[i].exp + poly2[j].exp; count++; } } // 将数组中的结果组合成一个新的多项式并返回 Polynomial res; for (int i = 0; i < count; i++) { if (result[i].coef == 0) { continue; } for (int j = i+1; j < count; j++) { if (result[j].coef == 0) { continue; } if (result[i].exp == result[j].exp) { result[i].coef += result[j].coef; result[j].coef = 0; } } res.coef = result[i].coef; res.exp = result[i].exp; } return res; } int main() { Polynomial poly1[MAX_TERMS], poly2[MAX_TERMS]; int n1, n2; input(poly1, &n1); input(poly2, &n2); output(poly1, n1); output(poly2, n2); Polynomial res = multiply(poly1, n1, poly2, n2); output(&res, 1); return 0; } ``` 注意,本程序只是一个简单的实现,还有很多需要改进的地方。例如,需要对输入的多项式进行排序,以便进行相乘时可以减少运算量。

相关推荐

最新推荐

recommend-type

数据结构 一元多项式运算 C++实现

4. PolyNode *Mul(PolyNode *A,PolyNode *B):本函数的调用情况和求和函数一样,计算过程是:用第一个多项式的每一项与后一多项式相乘,结果保存到一个新的链表里面。每一项相乘之后调用加法函数进行求和,最后的...
recommend-type

C++数据结构课程设计一元多项式运算

3. **相加函数**:`PolyNode *Plus(PolyNode *A, PolyNode *B)` 实现两个一元多项式相加。两个多项式链表的头指针作为参数传入,遍历两个链表,将相同指数的项合并,系数相加,构建新的链表返回。 4. **相乘函数**...
recommend-type

数据结构实习 一元稀疏多项式计算器的设计

MultiplyPolyn(Pa,Pb):完成多项式相乘运算,即:Pa=Pa×Pb,并销毁一元多项式 Pb。 Derivative(head):求解并建立 a 的导函数多项式,并返回其头指针。 ValuePolyn(head,x):输入 x 值,计算并返回多项式 a 的值...
recommend-type

JAVA图书馆书库管理系统设计(论文+源代码).zip

JAVA图书馆书库管理系统设计(论文+源代码)
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依