if(!rst_n) begin pluse1<=0;//按键一确定信号 pluse2<=0;//按键二确定信号 pluse3<=0;//按键三确定信号 pluse4<=0;//按键四确定信号 end

时间: 2024-02-15 13:27:16 浏览: 13
这是一个 Verilog HDL 中的条件语句块,其中: - if(!rst_n) ... end 表示如果复位信号 rst_n 为低电平,则执行 if 语句块中的语句。 - 在 if 语句块中,pluse1<=0; pluse2<=0; pluse3<=0; pluse4<=0; 表示将 pluse1、pluse2、pluse3、pluse4 四个信号的值都更新为低电平 0。 该条件语句块实现了一个简单的逻辑,当复位信号 rst_n 为低电平时,将四个信号的值都设置为低电平 0。
相关问题

module sr04( input clk , input rst_n , input echo , output wire trig , output echo_d, output [7:0] distance ); parameter INTERVAL = 5_000_000; //100ms reg [22:0] cnt ; reg [24:0] echo_cnt_reg[3:0], echo_cnt; wire [21:0] echo_mean; reg [1:0] addr; reg echo_1,echo_2; wire echo_flag; wire echo_h; assign echo_h = (~echo_2) & echo_1; assign echo_d = (~echo_1) & echo_2; assign trig = (cnt < 500) ? 1 : 0; assign distance = echo_mean * 78 / 1_000_000; assign echo_mean = (echo_cnt_reg[0]+echo_cnt_reg[1]+echo_cnt_reg[2]+echo_cnt_reg[3]) >> 2; always @(posedge clk or negedge rst_n) begin if(!rst_n)begin addr <= 0; echo_cnt_reg[0] <= 0; echo_cnt_reg[1] <= 0; echo_cnt_reg[2] <= 0; echo_cnt_reg[3] <= 0; end else if(echo_d)begin echo_cnt_reg[addr] <= echo_cnt; if(addr == 3) addr <= 0; else addr <= addr + 1; end else begin addr <= addr; echo_cnt_reg[addr] <= echo_cnt_reg[addr]; end end always @(posedge clk or negedge rst_n) begin if(!rst_n)begin cnt <= 0; end else if(cnt == INTERVAL) cnt <= 0; else cnt <= cnt + 1'b1; end always @(posedge clk or negedge rst_n) begin if(!rst_n)begin echo_1 <= 0; echo_2 <= 0; end else begin echo_1 <= echo ; echo_2 <= echo_1; end end always @(posedge clk or negedge rst_n) begin if(!rst_n) echo_cnt <= 0; else if(!cnt) echo_cnt <= 0; else if(echo) echo_cnt <= echo_cnt + 1; else echo_cnt <= echo_cnt; end endmodule 分析其中的核心代码及其功能

这是一个用于超声波测距的模块,其中的核心代码是: ``` assign trig = (cnt < 500) ? 1 : 0; assign distance = echo_mean * 78 / 1_000_000; assign echo_mean = (echo_cnt_reg[0]+echo_cnt_reg[1]+echo_cnt_reg[2]+echo_cnt_reg[3]) >> 2; always @(posedge clk or negedge rst_n) begin if(!rst_n)begin addr <= 0; echo_cnt_reg[0] <= 0; echo_cnt_reg[1] <= 0; echo_cnt_reg[2] <= 0; echo_cnt_reg[3] <= 0; end else if(echo_d)begin echo_cnt_reg[addr] <= echo_cnt; if(addr == 3) addr <= 0; else addr <= addr + 1; end else begin addr <= addr; echo_cnt_reg[addr] <= echo_cnt_reg[addr]; end end ``` 其中,`trig`是控制超声波发射的信号,当`cnt`小于500时,`trig`为1,否则为0。`distance`是计算出的距离值,通过将`echo_mean`乘以78再除以1,000,000得到。`echo_mean`是计算出的4个回波信号的平均值,通过将4个寄存器中的值相加除以4得到。 在`always`块中,首先根据`rst_n`信号来进行复位操作;然后根据`echo_d`信号来将当前的回波信号计数值存入对应的寄存器中,同时更新`addr`的值,以便下一次存入另一个寄存器;最后,如果没有回波信号,则不进行操作。

//延时模块 always @(posedge clk or negedge rst_n) begin if (!rst_n) begin cnt<=20'b0; end else if (add_cnt) begin if (end_cnt) begin cnt<=20'b0; end else cnt<=cnt+1; end end

这段代码同样使用了 Verilog HDL 描述了一个电路模块的行为。该模块包含一个计数器 cnt 和两个控制信号 add_cnt 和 end_cnt。当复位信号 rst_n 为低电平时,计数器 cnt 强制置为 0。当控制信号 add_cnt 为高电平时,计数器 cnt 加 1。当控制信号 end_cnt 为高电平时,计数器 cnt 强制置为 0。该模块的作用是实现一个可控制的延时,当控制信号 add_cnt 为高电平时,延时计数器开始计数,当控制信号 end_cnt 为高电平时,延时计数器强制清零,从而实现可控制的延时功能。

相关推荐

问题在哪?always @ (posedge clk or negedge rst_n) begin if(!rst_n) begin bps_start_r <= 1'bz;//波特率时钟启动信号 tx_en <= 1'b0; tx_data <= 1'b0; count <= 1'b0; end else if(start) begin //接收数据完毕,准备把接收到的数据发回去 bps_start_r <= 1'b1;//波特率时钟状态为1 case(count) 1'b00:begin tx_data <= data[2'd0]; count <= 1'b01; end 1'b01:begin tx_data <= data[2'd1]; count <= 1'b10; end 1'b10:begin//不做这个? tx_data <= data[2'd2]; count <= 1'b00; end default:count <= 1'b00; endcase tx_en <= 1'b1; //进入发送数据状态中 end else if(num==8'd11) begin //数据发送完成,复位 bps_start_r <= 1'b0; tx_en <= 1'b0; end end assign bps_start = bps_start_r; //--------------------------------------------------------- reg rs232_tx_r; always @ (posedge clk or negedge rst_n) begin if(!rst_n) begin num <= 8'd0; rs232_tx_r <= 1'b1; end else if(tx_en)//发送数据使能信号 begin if(clk_bps) begin num <= num+1'b1; case (num) 8'd0: rs232_tx_r <= 1'b0; //发送起始位 8'd1: rs232_tx_r <= tx_data[0] ; //发送第0bit 8'd2: rs232_tx_r <= tx_data[1] ; //发送第1bit 8'd3: rs232_tx_r <= tx_data[2] ; //发送第2bit 8'd4: rs232_tx_r <= tx_data[3] ; //发送第3bit 8'd5: rs232_tx_r <= tx_data[4] ; //发送第4bit 8'd6: rs232_tx_r <= tx_data[5] ; //发送第5bit 8'd7: rs232_tx_r <= tx_data[6] ; //发送第6bit 8'd8: rs232_tx_r <= tx_data[7] ; //发送第7bit 8'd9: rs232_tx_r <= 1'b1; //发送结束位 default: rs232_tx_r <= 1'b1; endcase end else if(num==8'd11) num <= 8'd0; //复位 end end assign rs232_tx = rs232_tx_r;

module seg_decode( input wire clk, input wire rst_n, input wire [4:0] seg_value_1, input wire [4:0] seg_value_2, output reg [5:0] sel, output reg [7:0] seg ); parameter CNT_20US = 10'd999; reg [3:0] number; wire [2:0] change_l; wire [2:0] change_h; reg [9:0] cnt; //计时模块 always@(posedge clk or negedge rst_n)begin if(!rst_n)begin cnt <= 10'd0; end else if(cnt == CNT_20US)begin cnt <= 10'd0; end else begin cnt <= cnt + 10'd1; end end always @(posedge clk or negedge rst_n) begin if(!rst_n)begin sel <= 6'b011111; end else if(cnt == CNT_20US)begin sel <= {sel[0],sel[5:1]}; end else begin sel <= sel; end end always @(posedge clk or negedge rst_n) begin if(!rst_n)begin number <= 4'd0; end else begin case(sel) 6'b011111: number <= seg_value_1 % 10; 6'b101111: number <= seg_value_1 / 10; 6'b110111: number <= seg_value_2 % 10; 6'b111011: number <= seg_value_2 / 10; 6'b111101: begin if(seg_value_2 < seg_value_1) number <= 4'd15; else number <= change_l; end 6'b111110: begin if(seg_value_2 < seg_value_1) number <= 4'd14; else number <= change_h; end default:number <= 4'd0; endcase end end always @(posedge clk or negedge rst_n) begin if(!rst_n)begin seg <= 8'b1100_0000; end else begin case(number) 4'd0: seg <= 8'b1100_0000; 4'd1: seg <= 8'b1111_1001; 4'd2: seg <= 8'b1010_0100; 4'd3: seg <= 8'b1011_0000; 4'd4: seg <= 8'b1001_1001; 4'd5: seg <= 8'b1001_0010; 4'd14: seg <= 8'b1000_0110; 4'd15: seg <= 8'b1100_1110; default:seg <= 8'b1100_0000; endcase end end assign change_l = (seg_value_2 - seg_value_1) % 10; assign change_h = (seg_value_2 - seg_value_1) / 10; sel_drive sel_drive_u ( .clk (clk), .rst_n (rst_n), .sel_2 () ); endmodule

最新推荐

recommend-type

智能制造的数字化工厂规划qytp.pptx

智能制造的数字化工厂规划qytp.pptx
recommend-type

罗兰贝格:德隆人力资源管理体系gltp.pptx

罗兰贝格:德隆人力资源管理体系gltp.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.