用C++实现Weiler-Atherton
时间: 2023-06-16 22:03:13 浏览: 263
MFC中的Weiler-Atherton算法
Weiler-Atherton算法是一个用于计算多边形交和差的算法。下面是一个用C++实现Weiler-Atherton算法的示例代码:
```cpp
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
// 点结构体
struct Point {
double x;
double y;
Point(double x, double y) : x(x), y(y) {}
};
// 线段结构体
struct Segment {
Point start;
Point end;
Segment(Point start, Point end) : start(start), end(end) {}
};
// 计算两个点之间的距离
double distance(Point p1, Point p2) {
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}
// 判断两个点是否相等
bool isEqual(Point p1, Point p2) {
return distance(p1, p2) < 1e-5;
}
// 判断点是否在线段上
bool isOnSegment(Segment s, Point p) {
double d1 = distance(s.start, p);
double d2 = distance(s.end, p);
double d = distance(s.start, s.end);
return isEqual(d1 + d2, d);
}
// 计算两线段的交点
Point getIntersection(Segment s1, Segment s2) {
double a1 = s1.end.y - s1.start.y;
double b1 = s1.start.x - s1.end.x;
double c1 = s1.end.x * s1.start.y - s1.start.x * s1.end.y;
double a2 = s2.end.y - s2.start.y;
double b2 = s2.start.x - s2.end.x;
double c2 = s2.end.x * s2.start.y - s2.start.x * s2.end.y;
double det = a1 * b2 - a2 * b1;
if (fabs(det) < 1e-5) {
return Point(0, 0);
}
double x = (b1 * c2 - b2 * c1) / det;
double y = (a2 * c1 - a1 * c2) / det;
Point p(x, y);
if (isOnSegment(s1, p) && isOnSegment(s2, p)) {
return p;
}
return Point(0, 0);
}
// 根据交点切割多边形
vector<Point> clipPolygon(vector<Point> polygon, Segment s) {
vector<Point> result;
for (int i = 0; i < polygon.size(); i++) {
Point p1 = polygon[i];
Point p2 = polygon[(i + 1) % polygon.size()];
Segment seg(p1, p2);
Point intersection = getIntersection(seg, s);
if (intersection.x != 0 || intersection.y != 0) {
result.push_back(intersection);
}
if (isOnSegment(seg, p2)) {
result.push_back(p2);
}
}
return result;
}
// 判断点是否在多边形内部
bool isInsidePolygon(Point p, vector<Point> polygon) {
Segment ray(p, Point(100000, p.y));
vector<Point> intersections;
for (int i = 0; i < polygon.size(); i++) {
Point p1 = polygon[i];
Point p2 = polygon[(i + 1) % polygon.size()];
Segment seg(p1, p2);
Point intersection = getIntersection(ray, seg);
if (intersection.x != 0 || intersection.y != 0) {
intersections.push_back(intersection);
}
}
if (intersections.size() % 2 == 0) {
return false;
}
return true;
}
// 计算多边形交
vector<Point> getIntersection(vector<Point> polygon1, vector<Point> polygon2) {
vector<Point> result;
for (int i = 0; i < polygon1.size(); i++) {
Point p1 = polygon1[i];
Point p2 = polygon1[(i + 1) % polygon1.size()];
Segment seg(p1, p2);
vector<Point> clippedPolygon = clipPolygon(polygon2, seg);
if (clippedPolygon.size() > 0) {
clippedPolygon.push_back(p2);
if (result.size() > 0 && !isEqual(result.back(), clippedPolygon.front())) {
result.push_back(clippedPolygon.front());
}
result.insert(result.end(), clippedPolygon.begin(), clippedPolygon.end());
} else if (isInsidePolygon(p1, polygon2)) {
result.push_back(p1);
}
}
return result;
}
// 计算多边形差
vector<Point> getDifference(vector<Point> polygon1, vector<Point> polygon2) {
vector<Point> result;
for (int i = 0; i < polygon1.size(); i++) {
Point p1 = polygon1[i];
Point p2 = polygon1[(i + 1) % polygon1.size()];
Segment seg(p1, p2);
vector<Point> clippedPolygon = clipPolygon(polygon2, seg);
if (clippedPolygon.size() == 0) {
result.push_back(p1);
} else if (!isEqual(p1, clippedPolygon.front())) {
result.push_back(p1);
}
}
return result;
}
// 输出点坐标
void printPoints(vector<Point> points) {
for (int i = 0; i < points.size(); i++) {
cout << "(" << points[i].x << ", " << points[i].y << ") ";
}
cout << endl;
}
int main() {
vector<Point> polygon1;
polygon1.push_back(Point(0, 0));
polygon1.push_back(Point(5, 0));
polygon1.push_back(Point(5, 5));
polygon1.push_back(Point(0, 5));
vector<Point> polygon2;
polygon2.push_back(Point(1, 1));
polygon2.push_back(Point(6, 1));
polygon2.push_back(Point(6, 6));
polygon2.push_back(Point(1, 6));
cout << "Polygon 1: ";
printPoints(polygon1);
cout << "Polygon 2: ";
printPoints(polygon2);
vector<Point> intersection = getIntersection(polygon1, polygon2);
cout << "Intersection: ";
printPoints(intersection);
vector<Point> difference = getDifference(polygon1, polygon2);
cout << "Difference: ";
printPoints(difference);
return 0;
}
```
上述代码实现了Weiler-Atherton算法的基本功能,包括计算多边形交和差。其中,clipPolygon函数用于根据线段切割多边形,isInsidePolygon函数用于判断点是否在多边形内部,getIntersection函数用于计算多边形交,getDifference函数用于计算多边形差。通过这些函数的组合,可以实现Weiler-Atherton算法的完整实现。
阅读全文