if(serial_MN->isOpen()) { QElapsedTimer t; t.start(); while(t.elapsed()<200) QCoreApplication::processEvents(); serial_MN->write(byteArray); }怎么修改为200ms一直连续发送

时间: 2024-03-27 15:40:18 浏览: 21
如果你要将上述代码修改为一直连续发送,并且每次发送之前等待200毫秒,可以使用一个无限循环来实现。需要注意的是,这种无限循环需要在某个条件下跳出,否则程序将一直运行下去。 以下是修改后的代码: ```cpp if(serial_MN->isOpen()) { while(true) { // 无限循环 QElapsedTimer t; t.start(); while(t.elapsed() < 200) { QCoreApplication::processEvents(); } serial_MN->write(byteArray); } } ``` 这样就可以让程序一直发送,并且每次发送之前等待200毫秒。你可以根据需要添加跳出循环的条件。
相关问题

qt在打开串口的同时调用这个函数会奔溃void MainWindow::init_send() { if(flag_flag2==0) { QVector<QPointF> ppp; QPointF pp1; pp1.setX(0); pp1.setY(0); ppp.append(pp1); QByteArray ba_MNGPS=MNGPSBa(ppp[0],0); showPaint(); if(serial_MN->isOpen()) { QElapsedTimer t; t.start(); while(t.elapsed()<200) QCoreApplication::processEvents(); serial_MN->write(ba_MNGPS); } timerttt->start(200); // 每隔1秒执行一次 myFunction() } }

如果在打开串口的同时调用init_send()函数导致程序崩溃,可能是因为在函数中涉及到了UI操作,而此时UI还没有被正确初始化。为了解决这个问题,您可以将init_send()函数的调用放在串口打开完成的槽函数中,例如: ```cpp void MainWindow::on_btn_openMN_clicked() { // 打开串口代码 if(serial_MN->isOpen()) { connect(serial_MN, &QSerialPort::readyRead, this, &MainWindow::readMNData); connect(serial_MN, &QSerialPort::errorOccurred, this, &MainWindow::handleMNError); // 在串口打开完成后调用init_send()函数 init_send(); } else { QMessageBox::critical(this, "Error", "Failed to open serial port!"); } } ``` 这样,init_send()函数就会在保证UI已经正确初始化的情况下被调用,避免了程序崩溃的问题。

QElapsedTimer t; t.start(); while (v!=vrValue(vr)) qApp->processEvents(); return t.elapsed()<timeout_sec*1000.0;

这段代码使用了 `QElapsedTimer` 类来计算时间间隔。首先,创建了一个 `QElapsedTimer` 对象 `t`,然后调用 `start()` 方法开始计时。 接下来,进入一个 `while` 循环,条件是 `v` 不等于 `vrValue(vr)`。在循环体中,调用 `qApp->processEvents()` 来处理应用程序的事件,这可能是为了确保其他操作可以及时执行。 最后,返回一个比较表达式 `t.elapsed()<timeout_sec*1000.0` 的结果。这里使用了 `elapsed()` 方法来获取经过的时间(以毫秒为单位),然后将其与 `timeout_sec` 乘以 1000 比较。如果经过的时间小于设定的超时时间(以秒为单位),则返回 `true`,否则返回 `false`。

相关推荐

ImportError Traceback (most recent call last) <ipython-input-3-b25a42d5a266> in <module>() 8 from sklearn.preprocessing import StandardScaler,PowerTransformer 9 from sklearn.linear_model import LinearRegression,LassoCV,LogisticRegression ---> 10 from sklearn.ensemble import RandomForestClassifier,RandomForestRegressor 11 from sklearn.model_selection import KFold,train_test_split,StratifiedKFold,GridSearchCV,cross_val_score 12 from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score,accuracy_score, precision_score,recall_score, roc_auc_score ~\Anaconda3\lib\site-packages\sklearn\ensemble\__init__.py in <module>() 3 classification, regression and anomaly detection. 4 """ ----> 5 from ._base import BaseEnsemble 6 from ._forest import RandomForestClassifier 7 from ._forest import RandomForestRegressor ~\Anaconda3\lib\site-packages\sklearn\ensemble\_base.py in <module>() 16 from ..base import BaseEstimator 17 from ..base import MetaEstimatorMixin ---> 18 from ..tree import DecisionTreeRegressor, ExtraTreeRegressor 19 from ..utils import Bunch, _print_elapsed_time 20 from ..utils import check_random_state ~\Anaconda3\lib\site-packages\sklearn\tree\__init__.py in <module>() 4 """ 5 ----> 6 from ._classes import BaseDecisionTree 7 from ._classes import DecisionTreeClassifier 8 from ._classes import DecisionTreeRegressor ~\Anaconda3\lib\site-packages\sklearn\tree\_classes.py in <module>() 39 from ..utils.validation import check_is_fitted 40 ---> 41 from ._criterion import Criterion 42 from ._splitter import Splitter 43 from ._tree import DepthFirstTreeBuilder sklearn\tree\_criterion.pyx in init sklearn.tree._criterion() ImportError: DLL load failed: 找不到指定的模块。 怎么改

for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad()){ painter.drawPixmap(agvs[i].getCurrentX()*25+200-(nodeSpacing-nodeSize)/2,(agvs[i].getCurrentY()+1)*25+50-(nodeSpacing-nodeSize)/2,25,25,QPixmap(":/new/prefix1/agvload.png").scaled(25,25)); } else { painter.drawPixmap(agvs[i].getCurrentX()*25+200-(nodeSpacing-nodeSize)/2,(agvs[i].getCurrentY()+1)25+50-(nodeSpacing-nodeSize)/2,25,25,QPixmap(":/new/prefix1/agv1.png").scaled(25,25)); },//模擬小車行駛 for (int i = 0; i < agvs.size(); i++) { for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (tasks[completed_task_index].completed == 2 ) { // 如果已经完成任务 paths[i].clear(); continue; // 跳过此次循环 } if (! paths[i].empty()) { int cur_x = agvs[i].getCurrentX(); int cur_y = agvs[i].getCurrentY(); Node next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; // 计算电量的减少量 float power_consumption = distance /20; //_MAP[cur_x][cur_y] = 1; QTimer::singleShot(time, this, &, i, next_node, cur_x, cur_y, power_consumption { // 离开当前位置时将标记设为0 //MAP[cur_x][cur_y] = 0; agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); // 更新电量 agvs[i].setpower(agvs[i].power- power_consumption); this->update(); // 在窗口中重绘 }); } },修改代碼:讓agv實現貝塞爾曲綫移動

最新推荐

recommend-type

26. 基于视觉的道路识别技术的智能小车导航源代码.zip

1.智能循迹寻光小车(原埋图+PCB+程序).zip 2.智能循迹小车程序.zip 3.智能寻迹小车c程序和驱动.zip 4. 智能小车寻迹(含霍尔测連)c程序,zip 5.智能小车完整控制程序,zip 6.智能小车黑线循迹、避障、遥控实验综合程序,zip 7.智能小车测速+12864显示 C程序,zip 8. 智能小车(循迹、避障、遥控、测距、电压检测)原理图及源代码,zip 9.智能灭火小车,zip 10,智能搬运机器人程序.zip 11.智能arduino小车源程序,z1p 12.-种基于STM32的语音蓝牙智能小车,zip 13.循迹小车决赛程序,zip 14.循迹小车51程序(超声波 颜色识别 舵机 步进电机 1602).zip 15.寻光小车,zip 16.小车测速程序,zip 17.五路循迹智能小车c源码.zip 18.无线小车原理图和程序,zip 19.四驱智能小车资料包(源程序+原理图+芯片手册+各模块产品手册).zip 20.4WD小车安装教程及程序,z1p 21.四路红外循迹小车决赛程序,zip 22,适合初学者借鉴的arduino智能小车代码集合,zip 23.脑电波控制小车,zip 24.蓝牙智能避障小车,zip 25.基于树莓派监控小车源码.zip 26.基于视觉的道路识别技术的智能小车导航源代码,zip 27.基于STM32F407的超声波智能跟随小车,zip 28.基于arduino的蓝牙智能小车,zip.zip 29.基于51的蓝牙智能小车,zip 30.基于51单片机的红外遥控控制小车程序,zip
recommend-type

295_驾校预约管理系统的设计与实现-源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

price2016.csv

price2016.csv
recommend-type

三层复式别墅-别墅结构.dwg

三层复式别墅—别墅结构.dwg
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依