def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)): # Resize and pad image while meeting stride-multiple constraints shape = im.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return im, ratio, (dw, dh)
时间: 2024-04-09 09:27:10 浏览: 139
根据你提供的代码,`letterbox` 函数的参数类型似乎是正确的。然而,错误信息是在除法运算中出现的,因此问题可能出现在其他地方。
根据代码,除法运算的操作数是 `new_shape[0] / shape[0]` 和 `new_shape[1] / shape[1]`。这意味着 `new_shape` 和 `shape` 的元素应该是整数类型。
你可以检查一下调用 `letterbox` 函数时传递给 `im` 参数的图像是否正确。确保它是一个具有正确形状的图像数组。
如果问题仍然存在,你可以提供更多调用 `letterbox` 函数的代码以便我能够更好地帮助你解决问题。
相关问题
解释一段python代码 def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), scaleup=True, stride=32): shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better test mAP) r = min(r, 1.0) ratio = r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding dw /= 2 dh /= 2 if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return img,ratio,(dw,dh)
这段代码实现的是一个图像处理函数,它将输入的图像进行大小调整和填充操作,使其符合指定的大小要求。具体来说,函数的输入参数img是一个图像数据,new_shape是期望的新尺寸,color是填充颜色,scaleup表示是否可以放大图像,stride是填充步长。函数首先获取输入图像的当前尺寸,然后根据new_shape计算出缩放比例r,如果scaleup为False,则限制r的最大值为1.0,以确保不会放大图像。接着,函数根据r计算出新的宽高比ratio,然后计算出新图像的宽高new_unpad,并计算出需要填充的行列数dw和dh。如果当前图像尺寸不等于新图像尺寸,则调用cv2.resize函数进行缩放操作。最后,函数使用cv2.copyMakeBorder函数对图像进行填充,返回填充后的图像、缩放比例和填充行列数。
帮我给每行代码加上注释 def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): # 获取当前图片的长宽 shape = img.shape[:2] # current shape [height, width]) if isinstance(new_shape, int): new_shape = (new_shape, new_shape) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: r = min(r, 1.0) new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if auto: dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding elif scaleFill: dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) return img, ratio, (dw, dh)
# 定义一个函数,用于将图片转换为指定大小,并添加边框填充
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
# 获取当前图片的长宽
shape = img.shape[:2] # current shape [height, width]
# 如果新的形状是一个整数,则将其转换为一个元组
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# 计算缩放比例
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup:
r = min(r, 1.0)
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
# 计算填充的宽度和高度
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
# 如果自动填充则进行填充
if auto:
dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
# 如果进行缩放填充,则进行填充
elif scaleFill:
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
# 如果当前形状不等于新的形状,则进行缩放和填充
if shape[::-1] != new_unpad:
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
# 返回处理后的图片、缩放比例和填充宽度和高度
return img, ratio, (dw, dh)
阅读全文