stm32单片机的串口3和串口1有什么不同

时间: 2024-05-22 17:15:12 浏览: 17
STM32单片机的串口1和串口3有以下不同点: 1. 引脚不同:串口1使用PA9和PA10引脚作为TX和RX,而串口3使用PB10和PB11引脚作为TX和RX。 2. 时钟源不同:串口1使用APB2总线时钟作为时钟源,而串口3使用APB1总线时钟作为时钟源。 3. 波特率范围不同:串口1支持的波特率范围为9600 bps至115200 bps,而串口3支持的波特率范围为9600 bps至921600 bps。 4. 中断向量号不同:串口1中断的向量号为USART1_IRQn,而串口3中断的向量号为USART3_IRQn。 5. 功能不同:串口1支持多种工作模式,如异步模式、同步模式和单线半双工模式等,而串口3只支持异步模式。同时,串口1还支持硬件流控制,而串口3不支持。
相关问题

visualtft显示屏怎么和stm32单片机串口通信

Visual TFT显示屏是一种功能强大的图形用户界面开发工具,用于控制STM32单片机并显示图形界面。要实现Visual TFT显示屏和STM32单片机的串口通信,可以按照以下步骤进行: 1. 首先,确定Visual TFT显示屏和STM32单片机之间使用的串口通信协议,例如UART、SPI等。确保两者的通信方式匹配。 2. 在Visual TFT开发环境中,选择合适的组件用于串口通信。根据需要,可以选择串口发送、接收、接收中断等组件。 3. 在STM32单片机的代码中,配置相应的串口通信参数,例如波特率、数据位、停止位和校验位等。确保STM32单片机的串口配置和Visual TFT显示屏的串口配置一致。 4. 在STM32单片机的代码中,编写串口通信的发送和接收函数。这些函数用于发送和接收数据,与Visual TFT显示屏进行通信。 5. 在Visual TFT中,使用相应的组件函数发送和接收数据。根据需要,可以在发送和接收数据的过程中添加相应的控制逻辑。 6. 编译和烧录STM32单片机的代码,并将Visual TFT显示屏连接到STM32单片机的相应串口引脚。 7. 在Visual TFT开发环境中,点击运行或调试按钮,启动显示屏控制界面。通过界面上的按钮、文本框等交互组件,与STM32单片机进行串口通信。 以上是Visual TFT显示屏和STM32单片机串口通信的一般步骤。具体实现方法可能因具体的应用和硬件配置而有所不同。可以参考相关的开发文档、示例代码以及相关论坛和社区获取更详细的信息和帮助。

stm32 单片机 串口接收 有什么方法可以使用

在STM32单片机中,可以使用以下方法进行串口接收: 1. 中断接收: 通过配置USART的中断标志位,当接收到数据时,会触发中断,通过中断处理函数进行数据的处理。 2. 轮询接收: 通过查询USART的状态寄存器,判断是否接收到数据,如果接收到了数据,就通过读取数据寄存器获取数据,进行处理。 其中,中断接收的优点是能够实现异步接收,不会阻塞程序的运行,但是需要额外的中断处理函数和中断向量表。轮询接收的优点是简单易用,不需要额外的中断处理函数和中断向量表,但是会阻塞程序的运行。 以下是一个使用中断接收的示例代码: ```c #include "stm32f4xx.h" #define BUFFER_SIZE 10 uint8_t buffer[BUFFER_SIZE]; uint8_t index = 0; void USART2_IRQHandler(void) { if (USART_GetITStatus(USART2, USART_IT_RXNE) != RESET) { buffer[index++] = USART_ReceiveData(USART2); if (index >= BUFFER_SIZE) { index = 0; } } } int main(void) { /* USART2 Configuration */ USART_InitTypeDef USART_InitStruct; USART_InitStruct.USART_BaudRate = 115200; USART_InitStruct.USART_WordLength = USART_WordLength_8b; USART_InitStruct.USART_StopBits = USART_StopBits_1; USART_InitStruct.USART_Parity = USART_Parity_No; USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStruct.USART_Mode = USART_Mode_Rx; USART_Init(USART2, &USART_InitStruct); /* Enable USART2 RX Interrupt */ USART_ITConfig(USART2, USART_IT_RXNE, ENABLE); NVIC_EnableIRQ(USART2_IRQn); /* Enable USART2 */ USART_Cmd(USART2, ENABLE); while (1) { // do something } } ``` 在中断处理函数中,判断是否接收到数据并存储到缓冲区中。在主函数中可以通过查询缓冲区的方式获取接收到的数据并进行处理。

相关推荐

最新推荐

recommend-type

STM32单片机串口通讯代码

STM32单片机串口通讯代码是STM32开发中最常用的接口之一。通过串口,我们可以方便地把数据输出到电脑,方便我们进行程序调试。在STM32开发中,串口通讯代码是必不可少的一部分。下面我们来看看STM32的串口通讯代码是...
recommend-type

STM32串口发送注意问题

但是,在STM32F030xx单片机上,情况有所不同。在这台单片机上,无论是否发送字节,只要TDR为空,TXE置位,移位寄存器也为空,TC就会置位。因此,需要根据具体的单片机类型来选择合适的解决方法。 解决STM32串口发送...
recommend-type

通过学习USART1深入STM32F107VCT6的串口通信

STM32有数个串口,每个串口都有一个自己独立的波特率寄存器USART_BRR,通过设置该寄存器就可以达到配置不同波特率的目的,由于STM32采用分数波特率,所以STM32的串口波特率设置范围很宽,而且误差很小。
recommend-type

基于STM32单片机的差分升级(增量升级)算法移植手册V1.3, STM32+BsDiff+LZ77+CRC32

是通过差分算法将源版本与目标版本之间差异的部分提取出来制作成差分包,再经过压缩算法生成特别小的补丁包,接着不管通过什么方式(网络传输,串口,232,485,CAN总线,USB总线等)把补丁包下载至设备的Flash存储中,然后在...
recommend-type

STM32串口USART2程序

PA2,PA2端口复用为串口2的TX,RX。在配置某个口线时,首先应对它所在的端口的时钟进行使能。否则无法配置成功,由于用到了端口B, 因此要对这个端口的时钟。进行使能,同时由于用到复用IO口功能用于配置串口。因此...
recommend-type

电力电子与电力传动专业《电子技术基础》期末考试试题

"电力电子与电力传动专业《电子技术基础》期末考试题试卷(卷四)" 这份试卷涵盖了电子技术基础中的多个重要知识点,包括运放的特性、放大电路的类型、功率放大器的作用、功放电路的失真问题、复合管的运用以及集成电路LM386的应用等。 1. 运算放大器的理论: - 理想运放(Ideal Op-Amp)具有无限大的开环电压增益(A_od → ∞),这意味着它能够提供非常高的电压放大效果。 - 输入电阻(rid → ∞)表示几乎不消耗输入电流,因此不会影响信号源。 - 输出电阻(rod → 0)意味着运放能提供恒定的电压输出,不随负载变化。 - 共模抑制比(K_CMR → ∞)表示运放能有效地抑制共模信号,增强差模信号的放大。 2. 比例运算放大器: - 闭环电压放大倍数取决于集成运放的参数和外部反馈电阻的比例。 - 当引入负反馈时,放大倍数与运放本身的开环增益和反馈网络电阻有关。 3. 差动输入放大电路: - 其输入和输出电压的关系由差模电压增益决定,公式通常涉及输入电压差分和输出电压的关系。 4. 同相比例运算电路: - 当反馈电阻Rf为0,输入电阻R1趋向无穷大时,电路变成电压跟随器,其电压增益为1。 5. 功率放大器: - 通常位于放大器系统的末级,负责将较小的电信号转换为驱动负载的大电流或大电压信号。 - 主要任务是放大交流信号,并将其转换为功率输出。 6. 双电源互补对称功放(Bipolar Junction Transistor, BJT)和单电源互补对称功放(Single Supply Operational Amplifier, Op-Amp): - 双电源互补对称功放常被称为OTL电路,而单电源对称功放则称为OCL电路。 7. 交越失真及解决方法: - 在功放管之间接入偏置电阻和二极管,提供适当的偏置电流,使功放管在静态时工作在线性区,避免交越失真。 8. 复合管的电流放大系数: - 复合管的电流放大系数约等于两个组成管子的电流放大系数之乘积。 9. 复合管的构建原则: - 确保每个参与复合的管子的电流方向正确。 - 复合管的类型由参与复合的两个管子中的一种类型决定。 10. 复合管的优势与缺点: - 优点是能提高电流放大能力,增加集电极电流的负载能力。 - 缺点是热稳定性较差,可通过在第一个管子的发射极连接电阻来改善。 11. LM386集成电路: - 脚2是反相输入端,脚3是同相输入端。 - 脚1和8之间的外接元件用于调节增益和频率响应。 - 脚7通常是电源接地端。 - 脚5是一个内部电平移位器,用于设置工作电压范围。 - 脚4和6通常连接到电源的正负极。 12. 整流滤波电路: - 直流电压的稳定性受整流二极管的前向电压和滤波电容的充电/放电特性影响。 - 当二极管的前向电压变化或滤波电容的值改变时,输出直流电压会有波动。 这份试卷全面测试了学生对电子技术基础理论的理解,包括放大电路设计、运算放大器应用、功率放大器的工作原理,以及集成电路在实际电路中的运用。学生需要掌握这些概念并能灵活应用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

VGGNet与其他深度学习模型对比:优缺点全解析,做出明智的模型选择

![VGGNet与其他深度学习模型对比:优缺点全解析,做出明智的模型选择](https://img-blog.csdnimg.cn/a02739db1463453db084046846e0549d.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Lmd5LmF5ZGA,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. 深度学习模型概述 深度学习模型是一种强大的机器学习算法,它通过模拟人脑中的神经网络结构来学习和处理复杂数据。深度学习模
recommend-type

mysql 索引类型

MySQL中的索引类型主要有以下几种: 1. **B树索引(BTREE)**:这是最常用的索引类型,适用于大多数查询操作。B树索引的数据结构类似于一颗平衡二叉树,支持范围查询和排序。 2. **哈希索引(HASH)**:也称为散列索引,查找速度非常快,但只适用于等值查询(等于某个值),不支持范围查询。 3. **全文索引(FULLTEXT)**:用于全文本搜索,如MATCH AGAINST语句,适合于对文本字段进行复杂的搜索。 4. **空间索引(SPATIAL)**:如R-Tree,专为地理位置数据设计,支持点、线、面等几何形状的操作。 5. **唯一索引(UNIQUE)**:B树
recommend-type

电力电子技术期末考试题:电力客户与服务管理专业

"电力客户与服务管理专业《电力电子技术》期末考试题试卷(卷C)" 这份试卷涵盖了电力电子技术的基础知识,主要涉及放大电路的相关概念和分析方法。以下是试卷中的关键知识点: 1. **交流通路**:在放大器分析中,交流通路是指忽略直流偏置时的电路模型,它是用来分析交流信号通过放大器的路径。在绘制交流通路时,通常将电源电压视为短路,保留交流信号所影响的元件。 2. **放大电路的分析方法**:包括直流通路分析、交流通路分析和瞬时值图解法。直流通路关注的是静态工作点的确定,交流通路关注的是动态信号的传递。 3. **静态工作点稳定性**:当温度变化时,三极管参数会改变,可能导致放大电路静态工作点的漂移。为了稳定工作点,可以采用负反馈电路。 4. **失真类型**:由于三极管的非线性特性,会导致幅度失真,即非线性失真;而放大器对不同频率信号放大倍数的不同则可能导致频率响应失真或相位失真。 5. **通频带**:表示放大器能有效放大的频率范围,通常用下限频率fL和上限频率fH来表示,公式为fH-fL。 6. **多级放大器的分类**:包括输入级、中间级和输出级。输入级负责处理小信号,中间级提供足够的电流驱动能力,输出级则要满足负载的需求。 7. **耦合方式**:多级放大电路间的耦合有直接耦合、阻容耦合和变压器耦合,每种耦合方式有其特定的应用场景。 8. **交流和直流信号放大**:若需要同时放大两者,通常选用直接耦合的方式。 9. **输入和输出电阻**:多级放大电路的输入电阻等于第一级的输入电阻,输出电阻等于最后一级的输出电阻。总电压放大倍数是各级放大倍数的乘积。 10. **放大器的基本组合状态**:包括共基放大、共集放大(又称射极跟随器)和共源放大。共集放大电路的电压放大倍数接近于1,但具有高输入电阻和低输出电阻的特性。 11. **场效应管的工作区域**:场效应管的输出特性曲线有截止区、饱和区和放大区。在放大区,场效应管可以作为放大器件使用。 12. **场效应管的控制机制**:场效应管利用栅极-源极间的电场来控制漏极-源极间的电流,因此被称为电压控制型器件。根据结构和工作原理,场效应管分为结型场效应管和绝缘栅型场效应管(MOSFET)。 13. **场效应管的电极**:包括源极(Source)、栅极(Gate)和漏极(Drain)。 14. **混合放大电路**:场效应管与晶体三极管结合可以构成各种类型的放大电路,如互补对称电路(如BJT的差分对电路)和MOSFET的MOS互补电路等。 这些知识点是电力电子技术中的基础,对于理解和设计电子电路至关重要。