给定一张TIF格式的影像,给定一套格网重投影坐标,输出一张新的TIF影像(要求是分块存储格式Tiled TIF); 1)实现为C++动态库,输出函数的接口定义如下: imgPath是输入的TIF影像路径; outImgPath是输出的TIF影像路径,要求以Tiled TIF格式存储,分块大小为256; gridWidth是原影像的格网矫正宽度,通常为64; gridPoints是原影像的格网矫正坐标,此数组中坐标点的顺序是逐行顺序存储。假设影像宽高分别为W,H,那么gridPoints中的点数为ceil(W/64)*H; 由于矫正坐标的最小值不一定为(0,0),因而输出影像是以矫正坐标的覆盖范围来决定影像的宽高,同时要求将矫正坐标的最小值作为偏移坐标值写入到TIF数据的GeoTransform头信息中。2)功能要求: 影像可能较大,因而不能完全加载全部影像到内存进行处理,所以只能分块处理; 速度较快,一张1GB的TIF数据,处理时间不能超过20秒; 自编一个程序测试上述接口; 3)环境要求: C++, GDAL3.0.2,VS 2017 推荐使用GDAL3.0.2读写影像
时间: 2023-11-17 21:05:27 浏览: 184
terrain地形生成ctb.rar
好的,这是一个比较复杂的任务,需要使用GDAL库进行处理。下面是代码实现和说明。
1. 安装GDAL库
首先,需要安装GDAL库,下载地址为:https://gdal.org/download.html 。选择对应系统的二进制安装程序进行安装即可。
2. 编写C++动态库
根据题目要求,需要编写一个C++动态库,其中包含一个输出函数的接口定义。下面是代码实现:
```
#ifndef IMAGEPROCESSOR_H
#define IMAGEPROCESSOR_H
#include <string>
#include <vector>
class ImageProcessor
{
public:
ImageProcessor();
~ImageProcessor();
bool processImage(const std::string& imgPath, const std::string& outImgPath, int gridWidth, const std::vector<double>& gridPoints);
private:
bool readBlock(int x, int y, int blockWidth, int blockHeight);
bool writeBlock(int x, int y, int blockWidth, int blockHeight);
private:
std::string m_imgPath;
std::string m_outImgPath;
int m_gridWidth;
std::vector<double> m_gridPoints;
int m_blockWidth;
int m_blockHeight;
int m_blockSize;
int m_numBlocksX;
int m_numBlocksY;
double m_xMin;
double m_yMax;
double m_xMax;
double m_yMin;
double* m_pData;
};
#endif // IMAGEPROCESSOR_H
```
其中,processImage函数用于处理影像,imgPath是输入影像的路径,outImgPath是输出影像的路径,gridWidth是格网宽度,gridPoints是格网坐标数组。readBlock函数用于读取影像块,writeBlock函数用于写入影像块。
3. 实现processImage函数
下面是processImage函数的实现:
```
bool ImageProcessor::processImage(const std::string& imgPath, const std::string& outImgPath, int gridWidth, const std::vector<double>& gridPoints)
{
m_imgPath = imgPath;
m_outImgPath = outImgPath;
m_gridWidth = gridWidth;
m_gridPoints = gridPoints;
// 打开输入影像
GDALAllRegister();
GDALDataset* pSrcDS = (GDALDataset*)GDALOpen(m_imgPath.c_str(), GA_ReadOnly);
if (pSrcDS == NULL)
{
printf("Open source image failed!\n");
return false;
}
// 获取输入影像的基本信息
int width = pSrcDS->GetRasterXSize();
int height = pSrcDS->GetRasterYSize();
int numBands = pSrcDS->GetRasterCount();
double geoTransform[6];
pSrcDS->GetGeoTransform(geoTransform);
double xRes = geoTransform[1];
double yRes = geoTransform[5];
// 计算块大小和块数
m_blockWidth = 256;
m_blockHeight = 256;
m_blockSize = m_blockWidth * m_blockHeight;
m_numBlocksX = (width + m_blockWidth - 1) / m_blockWidth;
m_numBlocksY = (height + m_blockHeight - 1) / m_blockHeight;
// 创建输出影像
GDALDriver* pDriver = GetGDALDriverManager()->GetDriverByName("GTiff");
GDALDataset* pDstDS = pDriver->Create(m_outImgPath.c_str(), width, height, numBands, GDT_Float32, NULL);
if (pDstDS == NULL)
{
printf("Create destination image failed!\n");
return false;
}
pDstDS->SetGeoTransform(geoTransform);
pDstDS->SetProjection(pSrcDS->GetProjectionRef());
// 计算矫正后的范围
m_xMin = m_gridPoints[0];
m_yMax = m_gridPoints[1];
m_xMax = m_gridPoints[m_gridPoints.size() - 2];
m_yMin = m_gridPoints[m_gridPoints.size() - 1];
for (int i = 0; i < m_gridPoints.size(); i += 2)
{
double x = m_gridPoints[i];
double y = m_gridPoints[i + 1];
if (x < m_xMin) m_xMin = x;
if (x > m_xMax) m_xMax = x;
if (y < m_yMin) m_yMin = y;
if (y > m_yMax) m_yMax = y;
}
// 计算输出影像中的偏移坐标
double dstX = m_xMin;
double dstY = m_yMax;
int dstXOff = (int)((dstX - geoTransform[0]) / geoTransform[1] + 0.5);
int dstYOff = (int)((dstY - geoTransform[3]) / geoTransform[5] + 0.5);
double dstGeoTransform[6] = { dstX, geoTransform[1], geoTransform[2], dstY, geoTransform[4], geoTransform[5] };
pDstDS->SetGeoTransform(dstGeoTransform);
// 分块处理
m_pData = new double[m_blockSize * numBands];
for (int j = 0; j < m_numBlocksY; j++)
{
for (int i = 0; i < m_numBlocksX; i++)
{
int x = i * m_blockWidth;
int y = j * m_blockHeight;
int blockWidth = m_blockWidth;
int blockHeight = m_blockHeight;
if (x + blockWidth > width) blockWidth = width - x;
if (y + blockHeight > height) blockHeight = height - y;
if (!readBlock(x, y, blockWidth, blockHeight))
{
return false;
}
for (int k = 0; k < gridPoints.size(); k += 2)
{
double xSrc = gridPoints[k];
double ySrc = gridPoints[k + 1];
int xDst = (int)((xSrc - dstX) / xRes + 0.5);
int yDst = (int)((dstY - ySrc) / yRes + 0.5);
if (xDst >= 0 && xDst < width && yDst >= 0 && yDst < height)
{
double* pData = m_pData + (yDst - y) * blockWidth * numBands + (xDst - x) * numBands;
double* pSrcData = (double*)pSrcDS->GetRasterBand(1)->ReadBlock(xDst / m_blockWidth, yDst / m_blockHeight);
for (int n = 0; n < numBands; n++)
{
pData[n] = pSrcData[(yDst % m_blockHeight) * m_blockWidth + (xDst % m_blockWidth) + n * m_blockSize];
}
}
}
if (!writeBlock(x, y, blockWidth, blockHeight))
{
return false;
}
}
}
return true;
}
```
该函数首先打开输入影像,并获取影像的基本信息,计算块大小和块数。接下来,创建输出影像,并计算矫正后的范围和输出影像中的偏移坐标。最后,通过分块处理的方式,依次读取每个块,将块内的像素按照矫正后的坐标进行重采样,然后写入到输出影像中。
4. 实现readBlock和writeBlock函数
下面是readBlock和writeBlock函数的实现:
```
bool ImageProcessor::readBlock(int x, int y, int blockWidth, int blockHeight)
{
GDALDataset* pSrcDS = (GDALDataset*)GDALOpen(m_imgPath.c_str(), GA_ReadOnly);
if (pSrcDS == NULL)
{
printf("Open source image failed!\n");
return false;
}
int numBands = pSrcDS->GetRasterCount();
for (int i = 0; i < numBands; i++)
{
GDALRasterBand* pBand = pSrcDS->GetRasterBand(i + 1);
pBand->ReadBlock(x / m_blockWidth, y / m_blockHeight, m_pData + i * m_blockSize);
}
GDALClose(pSrcDS);
return true;
}
bool ImageProcessor::writeBlock(int x, int y, int blockWidth, int blockHeight)
{
GDALDataset* pDstDS = (GDALDataset*)GDALOpen(m_outImgPath.c_str(), GA_Update);
if (pDstDS == NULL)
{
printf("Open destination image failed!\n");
return false;
}
int numBands = pDstDS->GetRasterCount();
for (int i = 0; i < numBands; i++)
{
GDALRasterBand* pBand = pDstDS->GetRasterBand(i + 1);
pBand->WriteBlock(x / m_blockWidth, y / m_blockHeight, m_pData + i * m_blockSize);
}
GDALClose(pDstDS);
return true;
}
```
readBlock函数用于读取输入影像的指定块,writeBlock函数用于将输出影像的指定块写入到文件中。
5. 编写测试程序
下面是一个简单的测试程序:
```
#include "ImageProcessor.h"
int main()
{
std::string imgPath = "input.tif";
std::string outImgPath = "output.tif";
int gridWidth = 64;
std::vector<double> gridPoints = { 0, 0, 64, 0, 0, 64, 64, 64 };
ImageProcessor processor;
processor.processImage(imgPath, outImgPath, gridWidth, gridPoints);
return 0;
}
```
该程序读取名为input.tif的影像,按照给定的格网坐标进行重采样,并将结果保存到名为output.tif的影像中。
以上就是实现一个分块处理TIF影像并进行格网矫正的C++动态库的方法。需要注意的是,由于影像可能较大,因此需要采用分块处理的方式,这样才能避免内存不足的问题。同时,为了处理速度,需要使用GDAL库进行影像读写操作。
阅读全文