n = int(input())max_num = (n // 17) * 17print(max_num)

时间: 2023-11-20 09:06:09 浏览: 30
This code takes an integer input from the user, calculates the maximum multiple of 17 that is less than or equal to the input number, and prints it out. For example, if the user inputs 100, the code calculates that the largest multiple of 17 that is less than or equal to 100 is 85 (since 5 * 17 = 85), and prints out 85. If the input number is already a multiple of 17, then the code will simply print out that number as the maximum. Note that the code assumes that the input number is positive. If the input number is negative, the code will still calculate the maximum multiple of 17 that is less than or equal to the absolute value of the input number, but the result will be negative.
相关问题

ls1 = list(map(int, input().split())) set1 = set(ls1) max_num = -1 for i in set1: if ls1.count(i) == i: if i > max_num: max_num = i print(max_num)

这段代码的功能是从标准输入中读入一组整数,找到其中满足该整数在数组中出现的次数等于该整数本身的最大整数,并输出该整数。 具体实现过程如下: 1. 从标准输入中读入一组整数,使用 `input()` 函数获取输入的字符串,使用 `split()` 函数将字符串按空格分割为多个子字符串,使用 `map()` 函数将每个子字符串转换为整数,并使用 `list()` 函数将转换后的整数组成列表。 2. 使用 `set()` 函数将列表中的元素去重,得到一个集合 `set1`,其中每个元素都是不重复的。 3. 初始化变量 `max_num` 为 -1,用于记录满足条件的最大整数。 4. 使用 for 循环遍历集合 `set1` 中的每个元素 `i`。 5. 使用 `ls1.count(i)` 函数统计整数 `i` 在列表 `ls1` 中出现的次数,如果该次数等于整数 `i` 本身,则说明该整数满足要求。 6. 如果整数 `i` 满足要求,并且比当前记录的最大整数 `max_num` 大,则将 `max_num` 更新为 `i`。 7. 循环结束后,变量 `max_num` 就是满足条件的最大整数。使用 `print(max_num)` 输出该整数。 需要注意的是,这段代码中没有对输入的整数个数和范围做出任何限制,如果输入的整数范围较大,程序的效率可能会比较低下。

num1=int(input()) num2=int(input()) a=max(num1,num2) b=min(num1,num2) r=a%b while r!=0: a=b b=r r=b%a sum=(num1*num2)//b print(sum)

你给出的代码实现了辗转相除法求最大公约数,并最终计算出了最小公倍数。代码中的变量名和实现方式与我之前给出的略有不同,但基本思路相同,都是通过循环实现辗转相除法,得出最大公约数,再通过 `num1*num2//最大公约数` 计算最小公倍数。 不过,你的代码中有一点需要注意的是,当 `r=b%a` 时,应该将 `r` 赋值给 `b`,而不是 `a`。应该修改为: ```python num1 = int(input()) num2 = int(input()) a = max(num1, num2) b = min(num1, num2) r = a % b while r != 0: a = b b = r r = a % b sum = (num1 * num2) // b print(sum) ``` 另外,建议加上变量名的注释,以便代码更易读懂。

相关推荐

逐行详细解释以下代码并加注释from tensorflow import keras import matplotlib.pyplot as plt base_image_path = keras.utils.get_file( "coast.jpg", origin="https://img-datasets.s3.amazonaws.com/coast.jpg") plt.axis("off") plt.imshow(keras.utils.load_img(base_image_path)) #instantiating a model from tensorflow.keras.applications import inception_v3 model = inception_v3.InceptionV3(weights='imagenet',include_top=False) #配置各层对DeepDream损失的贡献 layer_settings = { "mixed4": 1.0, "mixed5": 1.5, "mixed6": 2.0, "mixed7": 2.5, } outputs_dict = dict( [ (layer.name, layer.output) for layer in [model.get_layer(name) for name in layer_settings.keys()] ] ) feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict) #定义损失函数 import tensorflow as tf def compute_loss(input_image): features = feature_extractor(input_image) loss = tf.zeros(shape=()) for name in features.keys(): coeff = layer_settings[name] activation = features[name] loss += coeff * tf.reduce_mean(tf.square(activation[:, 2:-2, 2:-2, :])) return loss #梯度上升过程 @tf.function def gradient_ascent_step(image, learning_rate): with tf.GradientTape() as tape: tape.watch(image) loss = compute_loss(image) grads = tape.gradient(loss, image) grads = tf.math.l2_normalize(grads) image += learning_rate * grads return loss, image def gradient_ascent_loop(image, iterations, learning_rate, max_loss=None): for i in range(iterations): loss, image = gradient_ascent_step(image, learning_rate) if max_loss is not None and loss > max_loss: break print(f"... Loss value at step {i}: {loss:.2f}") return image #hyperparameters step = 20. num_octave = 3 octave_scale = 1.4 iterations = 30 max_loss = 15. #图像处理方面 import numpy as np def preprocess_image(image_path): img = keras.utils.load_img(image_path) img = keras.utils.img_to_array(img) img = np.expand_dims(img, axis=0) img = keras.applications.inception_v3.preprocess_input(img) return img def deprocess_image(img): img = img.reshape((img.shape[1], img.shape[2], 3)) img /= 2.0 img += 0.5 img *= 255. img = np.clip(img, 0, 255).astype("uint8") return img #在多个连续 上运行梯度上升 original_img = preprocess_image(base_image_path) original_shape = original_img.shape[1:3] successive_shapes = [original_shape] for i in range(1, num_octave): shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape]) successive_shapes.append(shape) successive_shapes = successive_shapes[::-1] shrunk_original_img = tf.image.resize(original_img, successive_shapes[0]) img = tf.identity(original_img) for i, shape in enumerate(successive_shapes): print(f"Processing octave {i} with shape {shape}") img = tf.image.resize(img, shape) img = gradient_ascent_loop( img, iterations=iterations, learning_rate=step, max_loss=max_loss ) upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape) same_size_original = tf.image.resize(original_img, shape) lost_detail = same_size_original - upscaled_shrunk_original_img img += lost_detail shrunk_original_img = tf.image.resize(original_img, shape) keras.utils.save_img("DeepDream.png", deprocess_image(img.numpy()))

import numpy import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn from torch.utils.data import DataLoader, Dataset import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value print(scalar) dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') train_X = torch.from_numpy(train_X) train_Y = torch.from_numpy(train_Y) test_X = torch.from_numpy(test_X) class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): out, h = self.rnn(x) out = self.linear(out[0]) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()请适当修改代码,并写出预测值和真实值的代码

下面的代码哪里有问题,帮我改一下from __future__ import print_function import numpy as np import tensorflow import keras from keras.models import Sequential from keras.layers import Dense,Dropout,Flatten from keras.layers import Conv2D,MaxPooling2D from keras import backend as K import tensorflow as tf import datetime import os np.random.seed(0) from sklearn.model_selection import train_test_split from PIL import Image import matplotlib.pyplot as plt from keras.datasets import mnist images = [] labels = [] (x_train,y_train),(x_test,y_test)=mnist.load_data() X = np.array(images) print (X.shape) y = np.array(list(map(int, labels))) print (y.shape) x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) print (x_train.shape) print (x_test.shape) print (y_train.shape) print (y_test.shape) ############################ ########## batch_size = 20 num_classes = 4 learning_rate = 0.0001 epochs = 10 img_rows,img_cols = 32 , 32 if K.image_data_format() =='channels_first': x_train =x_train.reshape(x_train.shape[0],1,img_rows,img_cols) x_test = x_test.reshape(x_test.shape[0],1,img_rows,img_cols) input_shape = (1,img_rows,img_cols) else: x_train = x_train.reshape(x_train.shape[0],img_rows,img_cols,1) x_test = x_test.reshape(x_test.shape[0],img_rows,img_cols,1) input_shape =(img_rows,img_cols,1) x_train =x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:',x_train.shape) print(x_train.shape[0],'train samples') print(x_test.shape[0],'test samples')

import jieba import pynlpir import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split # 读取文本文件 with open('1.txt', 'r', encoding='utf-8') as f: text = f.read() # 对文本进行分词 word_list = list(jieba.cut(text, cut_all=False)) # 打开pynlpir分词器 pynlpir.open() # 对分词后的词语进行词性标注 pos_list = pynlpir.segment(text, pos_tagging=True) # 将词汇表映射成整数编号 vocab = set(word_list) vocab_size = len(vocab) word_to_int = {word: i for i, word in enumerate(vocab)} int_to_word = {i: word for i, word in enumerate(vocab)} # 将词语和词性标记映射成整数编号 pos_tags = set(pos for word, pos in pos_list) num_tags = len(pos_tags) tag_to_int = {tag: i for i, tag in enumerate(pos_tags)} int_to_tag = {i: tag for i, tag in enumerate(pos_tags)} # 将文本和标签转换成整数序列 X = np.array([word_to_int[word] for word in word_list]) y = np.array([tag_to_int[pos] for word, pos in pos_list]) # 将数据划分成训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 定义模型参数 embedding_size = 128 rnn_size = 256 batch_size = 128 epochs = 10 # 定义RNN模型 model = tf.keras.Sequential([ tf.keras.layers.Embedding(vocab_size, embedding_size), tf.keras.layers.SimpleRNN(rnn_size), tf.keras.layers.Dense(num_tags, activation='softmax') ]) # 编译模型 model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(X_test, y_test)) # 对测试集进行预测 y_pred = model.predict(X_test) y_pred = np.argmax(y_pred, axis=1) # 计算模型准确率 accuracy = np.mean(y_pred == y_test) print('Accuracy: {:.2f}%'.format(accuracy * 100)) # 将模型保存到文件中 model.save('model.h5')出现下述问题:ValueError: Found input variables with inconsistent numbers of samples:

import itertools import warnings import pandas as pd import numpy as np import statsmodels.api as sm from datetime import datetime from statsmodels.tsa.arima.model import ARIMA from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from statsmodels.stats.diagnostic import acorr_ljungbox from sklearn.model_selection import train_test_split data = pd.read_csv('data.csv', parse_dates=['x'], index_col='x') train_data1, test_data = train_test_split(data1, test_size=0.3, shuffle=False) data['lag1'] = data['y'].shift(1) data['lag2'] = data['y'].shift(2) data['lag3'] = data['y'].shift(3) data['lag4'] = data['y'].shift(4) data['lag5'] = data['y'].shift(5) data['lag6'] = data['y'].shift(6) data['lag7'] = data['y'].shift(7) data.dropna(inplace=True) train_data, test_data1 = train_test_split(data, test_size=0.3, shuffle=False) g=int(input("输入P的峰值: ")) h=int(input("输入D的峰值: ")) i=int(input("输入Q的峰值: ")) p = range(0, g) d = range(0, h) q = range(0, i) pdq = list(itertools.product(p, d, q)) best_pdq = None best_aic = np.inf for param in pdq: model = sm.tsa.ARIMA(data['y'], exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']], order=param) results = model.fit() aic = results.aic if aic < best_aic: best_pdq = param best_aic = aic a=best_pdq[0] b=best_pdq[1] c=best_pdq[2] model = ARIMA(data['y'], exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']], order=(a,b,c)) results = model.fit() max_lag = model.k_ar model_fit = model.fit() resid = model_fit.resid lb_test = acorr_ljungbox(resid) p_value=round(lb_test['lb_pvalue'][max_lag],4) if p_value>0.05: forecast = results.forecast(steps=1, exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']].iloc[-1:]) forecast.index[0].strftime('%Y-%m') print("下个月的预测结果是",round(forecast[0])) def comput_acc(real,predict,level): num_error=0 for i in range(len(real)): if abs(real[i]-predict[i])/real[i]>level: num_error+=1 return 1-num_error/len(real) print("置信水平:{},预测准确率:{}".format(0.2,comput_acc(test_x,y_pred,0.2))) else: print('输入的数据不适合使用arima模型进行预测分析,请尝试其他模型')如何修改代码使其正常运行

最新推荐

recommend-type

广东石油化工学院机械设计基础课程设计任务书(二).docx

"广东石油化工学院机械设计基础课程设计任务书,涉及带式运输机的单级斜齿圆柱齿轮减速器的设计,包括传动方案拟定、电动机选择、传动比计算、V带设计、齿轮设计、减速器箱体尺寸设计、轴设计、轴承校核、键设计、润滑与密封等方面。此外,还包括设计小结和参考文献。同时,文档中还包含了一段关于如何提高WindowsXP系统启动速度的优化设置方法,通过Msconfig和Bootvis等工具进行系统调整,以加快电脑运行速度。" 在机械设计基础课程设计中,带式运输机的单级斜齿圆柱齿轮减速器设计是一个重要的实践环节。这个设计任务涵盖了多个关键知识点: 1. **传动方案拟定**:首先需要根据运输机的工作条件和性能要求,选择合适的传动方式,确定齿轮的类型、数量、布置形式等,以实现动力的有效传递。 2. **电动机的选择**:电动机是驱动整个系统的动力源,需要根据负载需求、效率、功率等因素,选取合适型号和规格的电动机。 3. **传动比计算**:确定总传动比是设计的关键,涉及到各级传动比的分配,确保减速器能够提供适当的转速降低,同时满足扭矩转换的要求。 4. **V带设计**:V带用于将电动机的动力传输到减速器,其设计包括带型选择、带轮直径计算、张紧力分析等,以保证传动效率和使用寿命。 5. **齿轮设计**:斜齿圆柱齿轮设计涉及模数、压力角、齿形、齿轮材料的选择,以及齿面接触和弯曲强度计算,确保齿轮在运行过程中的可靠性。 6. **减速器铸造箱体尺寸设计**:箱体应能容纳并固定所有运动部件,同时要考虑足够的强度和刚度,以及便于安装和维护的结构。 7. **轴的设计**:轴的尺寸、形状、材料选择直接影响到其承载能力和寿命,需要进行轴径、键槽、轴承配合等计算。 8. **轴承校核计算**:轴承承受轴向和径向载荷,校核计算确保轴承的使用寿命和安全性。 9. **键的设计**:键连接保证齿轮与轴之间的周向固定,设计时需考虑键的尺寸和强度。 10. **润滑与密封**:良好的润滑可以减少摩擦,延长设备寿命,密封则防止润滑油泄漏和外界污染物进入,确保设备正常运行。 此外,针对提高WindowsXP系统启动速度的方法,可以通过以下两个工具: 1. **Msconfig**:系统配置实用程序可以帮助用户管理启动时加载的程序和服务,禁用不必要的启动项以加快启动速度和减少资源占用。 2. **Bootvis**:这是一个微软提供的启动优化工具,通过分析和优化系统启动流程,能有效提升WindowsXP的启动速度。 通过这些设置和优化,不仅可以提高系统的启动速度,还能节省系统资源,提升电脑的整体运行效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python面向对象编程:设计模式与最佳实践,打造可维护、可扩展的代码

![Python面向对象编程:设计模式与最佳实践,打造可维护、可扩展的代码](https://img-blog.csdnimg.cn/direct/06d387a17fe44661b8a124ba652f9402.png) # 1. Python面向对象编程基础 面向对象编程(OOP)是一种编程范例,它将数据和方法组织成称为对象的抽象实体。OOP 的核心概念包括: - **类:**类是对象的蓝图,定义了对象的属性和方法。 - **对象:**对象是类的实例,具有自己的属性和方法。 - **继承:**子类可以继承父类的属性和方法,从而实现代码重用和扩展。 - **多态性:**子类可以覆盖父类的
recommend-type

cuda12.5对应的pytorch版本

CUDA 12.5 对应的 PyTorch 版本是 1.10.0,你可以在 PyTorch 官方网站上下载安装。另外,需要注意的是,你需要确保你的显卡支持 CUDA 12.5 才能正常使用 PyTorch 1.10.0。如果你的显卡不支持 CUDA 12.5,你可以尝试安装支持的 CUDA 版本对应的 PyTorch。
recommend-type

数控车床操作工技师理论知识复习题.docx

本资源是一份关于数控车床操作工技师理论知识的复习题,涵盖了多个方面的内容,旨在帮助考生巩固和复习专业知识,以便顺利通过技能鉴定考试。以下是部分题目及其知识点详解: 1. 数控机床的基本构成包括程序、输入输出装置、控制系统、伺服系统、检测反馈系统以及机床本体,这些组成部分协同工作实现精确的机械加工。 2. 工艺基准包括工序基准、定位基准、测量基准和装配基准,它们在生产过程中起到确定零件位置和尺寸的重要作用。 3. 锥度的标注符号应与实际锥度方向一致,确保加工精度。 4. 齿轮啮合要求压力角相等且模数相等,这是保证齿轮正常传动的基础条件。 5. 粗车刀的主偏角过小可能导致切削时产生振动,影响加工质量。 6. 安装车刀时,刀杆伸出量不宜过长,一般不超过刀杆长度的1.5倍,以提高刀具稳定性。 7. AutoCAD中,用户可以通过命令定制自己的线型,增强设计灵活性。 8. 自动编程中,将编译和数学处理后的信息转换成数控系统可识别的代码的过程被称为代码生成或代码转换。 9. 弹性变形和塑性变形都会导致零件和工具形状和尺寸发生变化,影响加工精度。 10. 数控机床的精度评估涉及精度、几何精度和工作精度等多个维度,反映了设备的加工能力。 11. CAD/CAM技术在产品设计和制造中的应用,提供了虚拟仿真环境,便于优化设计和验证性能。 12. 属性提取可以采用多种格式,如IGES、STEP和DXF,不同格式适用于不同的数据交换需求。 13. DNC代表Direct Numerical Control,即直接数字控制,允许机床在无需人工干预的情况下接收远程指令进行加工。 14. 刀具和夹具制造误差是工艺系统误差的一部分,影响加工精度。 15. 刀具磨损会导致加工出的零件表面粗糙度变差,精度下降。 16. 检验横刀架横向移动精度时,需用指示器检查与平盘接触情况,通常需要全程移动并重复检验。 17. 刀架回转的重复定位精度测试需多次重复,确保定位一致性。 18. 单作用叶片泵的排量与压力关系非线性,压力增加时排量可能减小,具体取决于设计特性。 19. 数控机床伺服轴常使用电动机作为驱动元件,实现高精度运动控制。 20. 全过程质量管理强调预防为主,同时也要注重用户需求和满意度。 21. MTBF(Mean Time Between Failures)指的是系统平均无故障时间,衡量设备可靠性的关键指标。 22. 使用完千分尺后,为了保持精度,应将千分尺归零并妥善保管。 23. 在其他条件不变时,包角越大,带传动传递的功率越大,因为更大的包角意味着更大的有效接触面积。 24. 设计夹具时,考虑工件刚性以减少变形,夹紧力应施加在稳定的部位。 25. 陶瓷刀具加工铝合金时,由于耐磨性好,磨损程度相对较低。 26. 几何造型中,二次曲线包括圆、椭圆、抛物线等,不包括直线和圆弧。 27. 切削力大小变化引起的加工误差,属于工艺系统动态误差。 28. 单作用叶片泵排量与压力关系同上。 29. 步进电动机的角位移由定子绕组通电状态决定,控制电机转速和方向。 30. 全过程质量管理中,预防为主的同时,还要重视预防和纠正措施的结合。 31. 伺服轴的驱动元件同样指电动机。 32. 车孔的关键技术包括刀具的选择、冷却和切屑控制,以及合理设定切削参数。 这份复习资料全面而深入地涵盖了数控车床操作工技师所需掌握的基础理论知识,对于提升技能和应对考试具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Python对象模型:深入理解Python对象的本质,提升编程境界

![Python对象模型:深入理解Python对象的本质,提升编程境界](https://foruda.gitee.com/images/1704590992897984968/31cf4c81_10826153.jpeg) # 1. Python对象的基本概念** Python对象是Python程序中操作的基本单元,它封装了数据和行为,是Python编程的基石。对象由数据和方法组成,数据存储在对象的属性中,方法是操作对象数据的函数。 Python对象具有类型,类型决定了对象的属性和方法。内置类型包括数字、字符串、列表、元组、字典等,自定义类型由用户定义。对象还具有引用计数,用于跟踪指向对
recommend-type

R语言中筛选出mes_sub_name为**数学/语文/英语**,且exam_numname为**期末总评**类的成绩,保存为变量**ExamScore_test**。

在R语言中,你可以使用以下代码筛选出mes_sub_name为数学、语文或英语,且exam_numname为期末总评类的成绩,并将结果保存为变量ExamScore_test: ``` ExamScore_test <- subset(df, (mes_sub_name == "数学" | mes_sub_name == "语文" | mes_sub_name == "英语") & exam_numname == "期末总评") ``` 其中,df是你所需要筛选的数据框。代码中使用了subset函数来实现数据筛选,&表示逻辑“与”,|表示逻辑“或”。筛选结果将会保存在变量ExamScore_
recommend-type

广州数控gsk980td车床数控系统详细对刀方法[1].docx

"广州数控GSK980TD车床的数控系统对刀方法" 在数控加工中,对刀是确保工件尺寸精度的关键步骤。广州数控GSK980TD车床是一款广泛应用的设备,其对刀过程需要精确操作。以下是对刀方法的详细步骤: 1. **准备工作**:首先,确保车床处于关闭状态,然后安装好待使用的刀具。检查刀具的长度和直径,这将在后续对刀过程中需要用到。 2. **主轴与刀架操作**: - a) 对于机械换档且主轴电机为单速电机的情况,切换数控系统至手动模式,按下主轴正转键启动,停止时按主轴停止键。 - b) 如果是机械换档但主轴电机为双速电机,切换到录入模式,通过输入M3、S1或S2指令切换速度,按运行键启动或停止主轴。 - c) 变频电机调速时,同样在录入模式下,输入M3及所需转速S指令,如S500,按运行键启动,用M5停止。 3. **对刀步骤**: - 使用刀具接触棒,将刀具轻轻触碰在车床的Z轴零点,记录当前Z轴显示的位置,这通常是刀具的长度补偿值。 - 接着,移动刀具到X轴零点,让刀尖接触工件表面,记录此时的X轴位置,这将是工件的外圆半径或者端面中心。 4. **设置刀具偏置**: - 在系统中找到刀具偏置设置界面,输入刚才记录的Z轴位置作为刀具长度补偿值,X轴位置作为刀具半径补偿值。 - 对于多刀具的情况,每换一把刀都需要重复以上步骤,确保每把刀的偏置值准确无误。 5. **验证对刀**: - 编写一个简单的测试程序,比如切削一段已知直径的圆柱,运行程序后观察实际切削尺寸是否与预期相符。如有误差,调整刀具偏置值直至符合要求。 6. **安全提示**: - 操作过程中务必遵循安全规程,避免快速移动刀具时造成意外碰撞。 - 在录入模式下运行主轴后,下次启动前若未断电,可以直接在手动模式下启动,但切换速度仍需在录入模式下完成。 了解并熟练掌握GSK980TD车床的对刀流程,能够有效提高工作效率,保证加工精度,是每个操作者必备的技能。在实际操作中,根据具体的车床配置和工件需求,可能需要微调上述步骤,但基本原理和流程保持不变。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩