解释下面代码 class VehicleState: def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0): self.x = x self.y = y self.yaw = yaw self.v = v def update(state, a, delta): state.x = state.x + state.v * math.cos(state.yaw) * dt state.y = state.y + state.v * math.sin(state.yaw) * dt state.yaw = state.yaw + state.v / L * math.tan(delta) * dt state.v = state.v + a * dt return state
时间: 2024-03-07 09:52:53 浏览: 145
这段代码定义了一个名为VehicleState的类,它有四个属性:x,y,yaw和v,分别代表车辆的位置x和y坐标、偏航角yaw和速度v。类中的__init__方法用于初始化这些属性,其中x、y、yaw、v的默认值均为0.0。另外,这个类还定义了一个名为update的函数,用于更新车辆状态。update函数接受三个参数:state表示当前状态,a表示加速度,delta表示方向盘转角。在函数内部,根据车辆当前的状态,利用欧拉法进行状态更新,并返回更新后的状态。
相关问题
粒子群算法路径规划gazebo代码
以下是使用粒子群算法进行路径规划的Gazebo仿真代码:
```python
import rospy
from geometry_msgs.msg import Twist
from sensor_msgs.msg import LaserScan
from nav_msgs.msg import Odometry
from tf.transformations import euler_from_quaternion
import random
import math
class Particle:
def __init__(self, x, y, yaw):
self.x = x
self.y = y
self.yaw = yaw
self.weight = 0.0
class PSOPathPlanning:
def __init__(self):
rospy.init_node('pso_path_planning')
rospy.Subscriber('/scan', LaserScan, self.laser_callback)
rospy.Subscriber('/odom', Odometry, self.odom_callback)
self.pub = rospy.Publisher('/cmd_vel', Twist, queue_size=10)
self.rate = rospy.Rate(10)
self.scan = LaserScan()
self.odom = Odometry()
self.goal_x = 5.0
self.goal_y = 5.0
self.max_x = 10.0
self.max_y = 10.0
self.min_x = 0.0
self.min_y = 0.0
self.num_particles = 10
self.num_iterations = 100
self.particles = []
self.global_best_particle = None
self.global_best_fitness = float('inf')
self.twist = Twist()
self.twist.linear.x = 0.1
self.twist.angular.z = 0.0
self.current_yaw = 0.0
self.current_x = 0.0
self.current_y = 0.0
def odom_callback(self, msg):
self.odom = msg
orientation_q = msg.pose.pose.orientation
orientation_list = [orientation_q.x, orientation_q.y, orientation_q.z, orientation_q.w]
(roll, pitch, yaw) = euler_from_quaternion (orientation_list)
self.current_yaw = yaw
self.current_x = msg.pose.pose.position.x
self.current_y = msg.pose.pose.position.y
def laser_callback(self, msg):
self.scan = msg
def euclidean_distance(self, x1, y1, x2, y2):
return math.sqrt((x1-x2)**2 + (y1-y2)**2)
def collision_check(self, x, y):
index = len(self.scan.ranges)/2
if self.scan.ranges[index] < 0.6:
return True
else:
return False
def fitness(self, x, y):
goal_distance = self.euclidean_distance(x, y, self.goal_x, self.goal_y)
obstacle_distance = 0.0
for i in range(0, 360, 10):
angle = math.radians(i)
x1 = x + self.scan.ranges[i]*math.cos(angle)
y1 = y + self.scan.ranges[i]*math.sin(angle)
obstacle_distance += self.euclidean_distance(x1, y1, x, y)
return goal_distance + obstacle_distance
def initialize_particles(self):
for i in range(self.num_particles):
x = random.uniform(self.min_x, self.max_x)
y = random.uniform(self.min_y, self.max_y)
yaw = random.uniform(-math.pi, math.pi)
particle = Particle(x, y, yaw)
particle.weight = self.fitness(x, y)
self.particles.append(particle)
if particle.weight < self.global_best_fitness:
self.global_best_particle = particle
self.global_best_fitness = particle.weight
def update_particles(self):
for particle in self.particles:
new_x = particle.x + random.uniform(-0.1, 0.1)
new_y = particle.y + random.uniform(-0.1, 0.1)
new_yaw = particle.yaw + random.uniform(-0.1, 0.1)
if new_x < self.min_x:
new_x = self.min_x
elif new_x > self.max_x:
new_x = self.max_x
if new_y < self.min_y:
new_y = self.min_y
elif new_y > self.max_y:
new_y = self.max_y
if new_yaw < -math.pi:
new_yaw = -math.pi
elif new_yaw > math.pi:
new_yaw = math.pi
if not self.collision_check(new_x, new_y):
new_weight = self.fitness(new_x, new_y)
if new_weight < particle.weight:
particle.x = new_x
particle.y = new_y
particle.yaw = new_yaw
particle.weight = new_weight
if new_weight < self.global_best_fitness:
self.global_best_particle = particle
self.global_best_fitness = new_weight
def run(self):
self.initialize_particles()
for i in range(self.num_iterations):
self.update_particles()
rospy.loginfo('Iteration: %d, Global Best Fitness: %f' % (i, self.global_best_fitness))
self.twist.angular.z = 0.5*math.atan2(self.global_best_particle.y - self.current_y, self.global_best_particle.x - self.current_x) - self.current_yaw
self.pub.publish(self.twist)
self.rate.sleep()
if __name__ == '__main__':
try:
pso_path_planning = PSOPathPlanning()
pso_path_planning.run()
except rospy.ROSInterruptException:
pass
```
该代码将机器人作为粒子,使用粒子群算法进行路径规划。机器人的运动通过发布Twist消息到/cmd_vel主题实现。在每次迭代中,机器人的目标角度被计算并设置为Twist消息的angular.z。机器人的位置和朝向通过订阅/odom主题和Odometry消息获取。机器人的激光扫描数据通过订阅/scan主题和LaserScan消息获取。
写一段利用PID控制车辆纵向的python代码
下面是一个简单的利用PID控制车辆纵向运动的Python代码:
```
class PIDController:
def __init__(self, kp, ki, kd):
self.kp = kp
self.ki = ki
self.kd = kd
self.error_prev = 0.0
self.integral = 0.0
def update(self, error, dt):
self.integral += error * dt
derivative = (error - self.error_prev) / dt
output = self.kp * error + self.ki * self.integral + self.kd * derivative
self.error_prev = error
return output
class Vehicle:
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
self.state = VehicleState(x, y, yaw, v)
self.pid = PIDController(0.1, 0.01, 0.5)
def update(self, dt, target_v):
error = target_v - self.state.v
acceleration = self.pid.update(error, dt)
delta = 0.0
self.state = update(self.state, acceleration, delta)
vehicle = Vehicle()
target_v = 10.0
dt = 0.1
time = 0.0
while time < 10.0:
vehicle.update(dt, target_v)
time += dt
```
在这个代码中,我们定义了一个名为PIDController的类,用于实现PID控制器。这个类的__init__方法接受三个参数:kp、ki和kd分别代表比例、积分和微分系数。在类中,我们定义了一个update方法,用于更新PID控制器的输出。
另外,我们还定义了一个名为Vehicle的类,代表车辆。在这个类中,我们初始化了一个VehicleState对象和一个PIDController对象。update方法接受两个参数:dt和target_v,分别代表时间步长和目标速度。在方法内部,我们首先计算速度误差error,然后通过PID控制器计算加速度输出。最后,调用update函数更新车辆状态。
最后,我们通过一个while循环模拟车辆的运动过程,每次更新车辆状态并增加时间步长dt。
阅读全文