roll 四元数转换示例
时间: 2023-10-24 22:08:33 浏览: 55
好的,这里提供一个四元数转换的示例代码:
```python
import math
class Quaternion:
def __init__(self, w=1.0, x=0.0, y=0.0, z=0.0):
self.w = w
self.x = x
self.y = y
self.z = z
def __mul__(self, other):
w = self.w * other.w - self.x * other.x - self.y * other.y - self.z * other.z
x = self.w * other.x + self.x * other.w + self.y * other.z - self.z * other.y
y = self.w * other.y - self.x * other.z + self.y * other.w + self.z * other.x
z = self.w * other.z + self.x * other.y - self.y * other.x + self.z * other.w
return Quaternion(w, x, y, z)
def rotate(self, point):
q_point = Quaternion(0, point[0], point[1], point[2])
q_conj = self.conjugate()
q_rotated = self * q_point * q_conj
return [q_rotated.x, q_rotated.y, q_rotated.z]
def conjugate(self):
return Quaternion(self.w, -self.x, -self.y, -self.z)
def normalize(self):
magnitude = math.sqrt(self.w ** 2 + self.x ** 2 + self.y ** 2 + self.z ** 2)
self.w /= magnitude
self.x /= magnitude
self.y /= magnitude
self.z /= magnitude
def euler_to_quaternion(roll, pitch, yaw):
cy = math.cos(yaw * 0.5)
sy = math.sin(yaw * 0.5)
cp = math.cos(pitch * 0.5)
sp = math.sin(pitch * 0.5)
cr = math.cos(roll * 0.5)
sr = math.sin(roll * 0.5)
q = Quaternion()
q.w = cy * cp * cr + sy * sp * sr
q.x = cy * cp * sr - sy * sp * cr
q.y = sy * cp * sr + cy * sp * cr
q.z = sy * cp * cr - cy * sp * sr
q.normalize()
return q
```
这里定义了一个 `Quaternion` 类,包含四元数乘法、向量旋转、共轭以及归一化等操作。同时,提供了一个 `euler_to_quaternion` 函数,将欧拉角转换为四元数。
示例代码中使用的是 XYZ 旋转顺序,可以根据实际需求调整。
阅读全文