已知一无向连通图G采用邻接矩阵存储写算法,输出Vi到Vj所经结点数最少的路径
时间: 2024-04-08 20:33:36 浏览: 69
无向图的邻接矩阵存储及输出
你可以使用Dijkstra算法来解决这个问题。下面是一个基于邻接矩阵的Dijkstra算法的示例代码:
```python
INF = float('inf') # 无穷大
def dijkstra(graph, start, end):
# 初始化距离数组和路径数组
distance = [INF] * len(graph)
distance[start] = 0
visited = [False] * len(graph)
path = [-1] * len(graph)
for _ in range(len(graph)):
# 找到当前距离最小的节点
min_dist = INF
min_dist_idx = -1
for i in range(len(graph)):
if not visited[i] and distance[i] < min_dist:
min_dist = distance[i]
min_dist_idx = i
visited[min_dist_idx] = True
# 更新与最小距离节点相邻节点的距离
for j in range(len(graph)):
if not visited[j] and graph[min_dist_idx][j] > 0 and distance[j] > distance[min_dist_idx] + graph[min_dist_idx][j]:
distance[j] = distance[min_dist_idx] + graph[min_dist_idx][j]
path[j] = min_dist_idx
# 构造最短路径
shortest_path = []
curr = end
while curr != -1:
shortest_path.append(curr)
curr = path[curr]
shortest_path.reverse()
return shortest_path
# 示例图的邻接矩阵表示
graph = [
[0, 2, 0, 4, 0],
[2, 0, 1, 0, 0],
[0, 1, 0, 3, 0],
[4, 0, 3, 0, 1],
[0, 0, 0, 1, 0]
]
start = 0 # Vi的索引
end = 3 # Vj的索引
shortest_path = dijkstra(graph, start, end)
min_node_count = len(shortest_path) - 1
print(f"最短路径为:{shortest_path}")
print(f"最少经过的节点数:{min_node_count}")
```
在这个例子中,我们使用邻接矩阵表示图G。算法会输出从节点Vi到节点Vj的最短路径,并计算出经过的节点数最少。你可以根据实际情况进行修改和调试。
阅读全文