给出具有三输入特征三输出的一维卷积神经网络,使用ResNet网络的基于pytorch的代码示例,使用([[1,2,3],[2,3,4]])作为输入特征,使用([[1,2,3],[2,3,4]])作为输出,使用([[1,2,3]])作为测试,包含训练和测试部分
时间: 2024-01-01 11:04:09 浏览: 97
以下是一个基于pytorch的ResNet网络的代码示例,实现了具有三个输入特征和三个输出的一维卷积神经网络,输入和输出都是([[1,2,3],[2,3,4]]),并使用([[1,2,3]])作为测试数据。
```
import torch
import torch.nn as nn
import torch.optim as optim
class ResNetBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResNetBlock, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm1d(out_channels)
self.stride = stride
self.downsample = None
if stride != 1 or in_channels != out_channels:
self.downsample = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(out_channels)
)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers):
super(ResNet, self).__init__()
self.in_channels = 3
self.conv1 = nn.Conv1d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self.make_layer(block, 64, layers[0])
self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
self.layer4 = self.make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc = nn.Linear(512, 3)
def make_layer(self, block, out_channels, blocks, stride=1):
layers = []
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels
for _ in range(1, blocks):
layers.append(block(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def train_model(model, train_loader, optimizer, criterion):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
def test_model(model, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = correct / len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset), 100. * accuracy))
if __name__ == '__main__':
train_data = torch.tensor([[1,2,3],[2,3,4]]) # 作为训练数据
train_target = torch.tensor([[1,2,3],[2,3,4]]) # 作为训练目标
test_data = torch.tensor([[1,2,3]]) # 作为测试数据
test_target = torch.tensor([1,2,3]) # 作为测试目标
train_dataset = torch.utils.data.TensorDataset(train_data, train_target)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=True)
test_dataset = torch.utils.data.TensorDataset(test_data, test_target)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
model = ResNet(ResNetBlock, [2, 2, 2, 2])
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
for epoch in range(10):
train_model(model, train_loader, optimizer, criterion)
test_model(model, test_loader, criterion)
```
在这个代码示例中,我们定义了一个ResNet模型,其中包含四个ResNet块,每个块包含2个卷积层,最终输出3个类别。我们还定义了一个训练函数和一个测试函数,用于训练和测试模型,在训练和测试过程中,我们使用交叉熵损失函数和Adam优化器来优化模型。
阅读全文