请给出一个和hadoop自带计算圆周率代码算法思路一样的完整代码
时间: 2024-03-27 07:36:16 浏览: 62
基于hadoop利用Apriori实现算法解决频繁项集问题源代码+文档报告
好的,这里是一个和Hadoop自带的计算圆周率代码算法思路一样的Java代码,使用了MapReduce框架实现:
Mapper:
```java
public class PiMapper extends Mapper<LongWritable, Text, NullWritable, NullWritable> {
private long numSamples;
private Random random = new Random();
protected void setup(Context context) throws IOException,InterruptedException {
Configuration conf = context.getConfiguration();
numSamples = conf.getLong("numSamples", 1);
}
protected void map(LongWritable key, Text value, Context context) throws IOException,InterruptedException {
long countInside = 0;
for (long i = 0; i < numSamples; i++) {
double x = random.nextDouble();
double y = random.nextDouble();
if ((x * x + y * y) < 1.0) {
countInside++;
}
}
context.getCounter("Pi", "countInside").increment(countInside);
context.getCounter("Pi", "numSamples").increment(numSamples);
}
}
```
Reducer:
```java
public class PiReducer extends Reducer<NullWritable, NullWritable, NullWritable, NullWritable> {
protected void reduce(NullWritable key, Iterable<NullWritable> values, Context context) throws IOException,InterruptedException {
long numSamples = context.getCounter("Pi", "numSamples").getValue();
long countInside = context.getCounter("Pi", "countInside").getValue();
double pi = 4.0 * countInside / numSamples;
context.write(NullWritable.get(), new Text("Pi estimation: " + pi));
}
}
```
Driver:
```java
public class PiEstimator {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
long numMaps = Long.parseLong(args[0]);
long numSamples = Long.parseLong(args[1]);
Job job = Job.getInstance(conf);
job.setJobName("Pi Estimator");
job.setJarByClass(PiEstimator.class);
job.setNumReduceTasks(1);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(NullWritable.class);
job.setMapperClass(PiMapper.class);
job.setReducerClass(PiReducer.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
TextInputFormat.setInputPaths(job, new Path("/dev/null"));
TextOutputFormat.setOutputPath(job, new Path("/tmp/pi"));
job.getConfiguration().setLong("numSamples", numSamples / numMaps);
job.waitForCompletion(true);
}
}
```
这个代码使用了MapReduce框架,将计算分为了多个Mapper任务,并将结果汇总到了一个Reducer任务中。每个Mapper任务会生成一定数量的随机点,然后计算这些随机点中在圆内的点的数量。Reducer任务会将所有的Mapper任务中在圆内的点的数量加起来,并计算出π的近似值。
阅读全文