多智能体DQN代码
时间: 2023-07-27 09:07:20 浏览: 135
多智能体系统仿真的代码。
5星 · 资源好评率100%
以下是一个简单的多智能体DQN代码示例:
```python
import random
import numpy as np
import tensorflow as tf
class DQNAgent:
def __init__(self, state_size, action_size, num_agents):
self.state_size = state_size
self.action_size = action_size
self.num_agents = num_agents
self.memory = []
self.gamma = 0.99
self.epsilon = 1.0
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
self.learning_rate = 0.001
self.model = self._build_model()
def _build_model(self):
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(24, input_dim=self.state_size, activation='relu'))
model.add(tf.keras.layers.Dense(24, activation='relu'))
model.add(tf.keras.layers.Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return [random.randrange(self.action_size) for _ in range(self.num_agents)]
act_values = self.model.predict(np.array(state))
return [np.argmax(act_values[i]) for i in range(self.num_agents)]
def replay(self, batch_size):
if len(self.memory) < batch_size:
return
minibatch = random.sample(self.memory, batch_size)
states = np.array([minibatch[i][0] for i in range(batch_size)])
actions = np.array([minibatch[i][1] for i in range(batch_size)])
rewards = np.array([minibatch[i][2] for i in range(batch_size)])
next_states = np.array([minibatch[i][3] for i in range(batch_size)])
dones = np.array([minibatch[i][4] for i in range(batch_size)])
targets = rewards + self.gamma * np.amax(self.model.predict(next_states), axis=1) * (1 - dones)
targets_full = self.model.predict(states)
targets_full[np.arange(batch_size), actions] = targets
self.model.fit(states, targets_full, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
```
在这个示例中,`DQNAgent` 类定义了一个多智能体的DQN代理。`_build_model` 方法定义了一个具有两个隐藏层的神经网络模型,用于近似每个智能体在给定状态下采取每个动作的Q值。`remember` 方法用于将每个智能体的经验存储在内存中。`act` 方法用于根据当前状态选择动作,epsilon-greedy策略用于在探索和利用之间进行权衡。`replay` 方法用于从经验回放缓冲区中随机抽取一批经验,然后使用DQN算法来更新神经网络模型的权重。`replay` 方法还用于逐渐降低探索率。
阅读全文