spyder中的else if
时间: 2023-10-30 21:05:06 浏览: 55
在 Python 中,`else if` 的语法是 `elif`。`elif` 是 `if` 语句的一种扩展,用于在之前的 `if` 条件不成立的情况下,检查下一个条件。如果该条件成立,则执行相应的代码块。以下是一个示例:
```
x = 10
if x > 20:
print("x is greater than 20")
elif x > 15:
print("x is greater than 15 but less than or equal to 20")
else:
print("x is less than or equal to 15")
```
在这个示例中,如果 `x` 大于 20,则第一个条件为真,执行第一个代码块。否则,检查第二个条件,即 `x` 大于 15。如果第二个条件为真,则执行第二个代码块。否则,执行 `else` 代码块。
相关问题
怎么在spyder中连接gurobi
在Spyder中集成Gurobi优化器,你需要安装相应的库和配置环境变量。以下是步骤:
1. **安装Gurobi**: 首先,访问Gurobi官网(https://www.gurobi.com/downloads/)下载适合Python版本的Gurobi Python API,并按照指示安装。
2. **安装Gurobi Python包**:
- 打开命令行或终端,导航到你的项目目录。
```
pip install gurobipy
```
3. **设置环境变量**:
- 安装完成后,Gurobi需要一些环境变量指向其安装路径。在Windows上,通常是在`%GRB_HOME%\bin`下;在Linux或Mac上,可能是`$GUROBI_HOME/bin`。将这些路径添加到系统的PATH环境变量中。
- 对于 Spyder,可以右键点击菜单选择 "Preferences" > "Python Interpreter",然后在Interpreter选项卡中找到 "Environment" 或 "SysPath",添加Gurobi的路径。
4. **导入Gurobi**:
在Spyder中创建一个新的Python文件,通过 `import gurobipy as gp` 来导入Gurobi模块。
5. **测试连接**:
编写一个小脚本,如创建一个简单的模型并解决它,然后运行以检查是否能成功连接和使用Gurobi。
示例代码(简化版):
```python
from gurobipy import *
# 创建模型
m = Model("example")
# 添加变量
x = m.addVar(name="x")
# 设置目标函数
m.setObjective(x, GRB.MAXIMIZE)
# 检查是否连接成功
if not m可行:
print("Failed to connect to Gurobi")
else:
print("Connected successfully.")
#
class SVDRecommender: def init(self, k=50, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): self.k = k self.ncv = ncv self.tol = tol self.which = which self.v0 = v0 self.maxiter = maxiter self.return_singular_vectors = return_singular_vectors self.solver = solver def svds(self, A): if which == 'LM': largest = True elif which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if k <= 0 or k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) # Get a low rank approximation of the implicitly defined gramian matrix. eigvals, eigvec = eigsh(XH_X, k=k, tol=tol ** 2, maxiter=maxiter, ncv=ncv, which=which, v0=v0) # Gramian matrix has real non-negative eigenvalues. eigvals = np.maximum(eigvals.real, 0) # Use complex detection of small eigenvalues from pinvh. t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) # Get a mask indicating which eigenpairs are not degenerate tiny, # and create a reordering array for thresholded singular values. above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh将这段代码放入一个.py文件中,用Spyder查看,有报错,可能是缩进有问题,无法被调用,根据这个问题,给出解决办法,给出改正后的完整代码
好的,根据你提供的代码,我发现其中存在一些缩进错误,导致代码无法运行。下面是修改后的完整代码,请注意缩进:
```python
import numpy as np
from scipy.sparse.linalg import eigsh, LinearOperator
from scipy.sparse import isspmatrix, is_pydata_spmatrix
class SVDRecommender:
def __init__(self, k=50, ncv=None, tol=0, which='LM', v0=None,
maxiter=None, return_singular_vectors=True, solver='arpack'):
self.k = k
self.ncv = ncv
self.tol = tol
self.which = which
self.v0 = v0
self.maxiter = maxiter
self.return_singular_vectors = return_singular_vectors
self.solver = solver
def svds(self, A):
if self.which == 'LM':
largest = True
elif self.which == 'SM':
largest = False
else:
raise ValueError("which must be either 'LM' or 'SM'.")
if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)):
A = np.asarray(A)
n, m = A.shape
if self.k <= 0 or self.k >= min(n, m):
raise ValueError("k must be between 1 and min(A.shape), k=%d" % self.k)
if isinstance(A, LinearOperator):
if n > m:
X_dot = A.matvec
X_matmat = A.matmat
XH_dot = A.rmatvec
XH_mat = A.rmatmat
else:
X_dot = A.rmatvec
X_matmat = A.rmatmat
XH_dot = A.matvec
XH_mat = A.matmat
dtype = getattr(A, 'dtype', None)
if dtype is None:
dtype = A.dot(np.zeros([m, 1])).dtype
else:
if n > m:
X_dot = X_matmat = A.dot
XH_dot = XH_mat = _herm(A).dot
else:
XH_dot = XH_mat = A.dot
X_dot = X_matmat = _herm(A).dot
def matvec_XH_X(x):
return XH_dot(X_dot(x))
def matmat_XH_X(x):
return XH_mat(X_matmat(x))
XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape)))
# Get a low rank approximation of the implicitly defined gramian matrix.
eigvals, eigvec = eigsh(XH_X, k=self.k, tol=self.tol ** 2, maxiter=self.maxiter, ncv=self.ncv,
which=self.which, v0=self.v0)
# Gramian matrix has real non-negative eigenvalues.
eigvals = np.maximum(eigvals.real, 0)
# Use complex detection of small eigenvalues from pinvh.
t = eigvec.dtype.char.lower()
factor = {'f': 1E3, 'd': 1E6}
cond = factor[t] * np.finfo(t).eps
cutoff = cond * np.max(eigvals)
# Get a mask indicating which eigenpairs are not degenerate tiny,
# and create a reordering array for thresholded singular values.
above_cutoff = (eigvals > cutoff)
nlarge = above_cutoff.sum()
nsmall = self.k - nlarge
slarge = np.sqrt(eigvals[above_cutoff])
s = np.zeros_like(eigvals)
s[:nlarge] = slarge
if not self.return_singular_vectors:
return np.sort(s)
if n > m:
vlarge = eigvec[:, above_cutoff]
ularge = X_matmat(vlarge) / slarge if self.return_singular_vectors != 'vh' else None
vhlarge = _herm(vlarge)
else:
ularge = eigvec[:, above_cutoff]
vhlarge = _herm(X_matmat(ularge) / slarge) if self.return_singular_vectors != 'u' else None
u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None
vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None
indexes_sorted = np.argsort(s)
s = s[indexes_sorted]
if u is not None:
u = u[:, indexes_sorted]
if vh is not None:
vh = vh[indexes_sorted]
return u, s, vh
def _augmented_orthonormal_cols(U, n):
if U.shape[0] <= n:
return U
Q, R = np.linalg.qr(U)
return Q[:, :n]
def _augmented_orthonormal_rows(V, n):
if V.shape[1] <= n:
return V
Q, R = np.linalg.qr(V.T)
return Q[:, :n].T
def _herm(x):
return np.conjugate(x.T)
阅读全文