利用遗传算法编写有多个货车的VRP问题的matlab代码
时间: 2023-11-28 14:48:00 浏览: 121
vrp遗传算法求解代码.zip_vrp matlab
5星 · 资源好评率100%
下面是利用遗传算法编写有多个货车的VRP问题的Matlab代码:
```matlab
% VRP问题的遗传算法求解
% 初始化数据
num_customers = 50; % 客户数量
num_vehicles = 5; % 货车数量
capacity = 100; % 货车最大容量
demand = randi([1,10],num_customers,1); % 客户需求随机生成
% 计算距离矩阵
locations = rand(num_customers,2); % 客户位置随机生成
dist = zeros(num_customers+1,num_customers+1);
for i = 1:num_customers+1
for j = 1:num_customers+1
dist(i,j) = norm(locations(i,:)-locations(j,:));
end
end
% 遗传算法参数
num_generations = 50;
population_size = 50;
mutation_rate = 0.05;
% 初始化种群
population = zeros(population_size,num_customers);
for i = 1:population_size
population(i,:) = randperm(num_customers);
end
% 遗传算法主循环
for gen = 1:num_generations
% 评估适应度
fitness = zeros(population_size,1);
for i = 1:population_size
routes = decode(population(i,:),num_vehicles,demand,capacity);
fitness(i) = evaluate(routes,dist);
end
% 选择父代
[sorted_fitness,indices] = sort(fitness,'descend');
parent_indices = indices(1:floor(population_size/2));
% 交叉
num_children = population_size - length(parent_indices);
children = zeros(num_children,num_customers);
for i = 1:num_children
parent1 = parent_indices(randi(length(parent_indices)));
parent2 = parent_indices(randi(length(parent_indices)));
child = crossover(population(parent1,:),population(parent2,:));
children(i,:) = mutate(child,mutation_rate);
end
% 更新种群
new_population = [population(parent_indices,:); children];
population = new_population;
% 输出结果
best_solution = decode(population(1,:),num_vehicles,demand,capacity);
best_fitness = evaluate(best_solution,dist);
fprintf('Generation %d: Best Fitness = %f\n',gen,best_fitness);
end
% 解码染色体,得到货车路径
function routes = decode(chromosome,num_vehicles,demand,capacity)
num_customers = length(chromosome);
routes = cell(num_vehicles,1);
vehicle_loads = zeros(num_vehicles,1);
vehicle_positions = ones(num_vehicles,1);
for i = 1:num_customers
customer = chromosome(i);
assigned = false;
for j = 1:num_vehicles
if ~assigned && vehicle_loads(j)+demand(customer) <= capacity
routes{j} = [routes{j} customer];
vehicle_loads(j) = vehicle_loads(j) + demand(customer);
assigned = true;
end
end
if ~assigned
error('Capacity exceeded');
end
end
end
% 计算路径长度
function length = route_length(route,dist)
length = 0;
for i = 1:length(route)-1
length = length + dist(route(i),route(i+1));
end
end
% 评估适应度
function fitness = evaluate(routes,dist)
fitness = 0;
for i = 1:length(routes)
if ~isempty(routes{i})
fitness = fitness + route_length([1 routes{i} 1],dist);
end
end
end
% 交叉
function child = crossover(parent1,parent2)
num_customers = length(parent1);
crossover_point = randi(num_customers-1);
child = [parent1(1:crossover_point) parent2(crossover_point+1:end)];
end
% 变异
function child = mutate(parent,mutation_rate)
num_customers = length(parent);
if rand < mutation_rate
indices = randsample(num_customers,2);
child = parent;
child(indices(1)) = parent(indices(2));
child(indices(2)) = parent(indices(1));
else
child = parent;
end
end
```
该代码实现了一个简单的遗传算法来解决有多个货车的VRP问题。该问题的目标是将一组客户分配给一组货车,使得每辆货车的总距离最小,同时满足每辆货车的容量限制。
首先,我们随机生成客户需求和位置,并计算距离矩阵。然后,我们使用遗传算法来搜索最佳解决方案。在每一代中,我们评估每个个体的适应度,选择父代进行交叉和变异,然后更新种群。最后,我们解码最佳个体,得到每辆货车的路径,并计算总距离。
阅读全文