给我写一个基于python的MD-DBSCAN处理带有题头的点云数据CSV文件的的代码
时间: 2024-02-24 16:57:50 浏览: 80
好的,下面是基于Python的MD-DBSCAN处理带有题头的点云数据CSV文件的代码:
```python
import pandas as pd
import numpy as np
from scipy.spatial import KDTree
from sklearn.mixture import GaussianMixture
from sklearn.metrics import pairwise_distances
class MDBSCAN:
def __init__(self, eps, min_samples, num_mixtures=1, covariance_type='full'):
self.eps = eps
self.min_samples = min_samples
self.num_mixtures = num_mixtures
self.covariance_type = covariance_type
self.density_est = None
self.labels_ = None
def fit(self, X):
self.density_est = GaussianMixture(n_components=self.num_mixtures, covariance_type=self.covariance_type)
self.density_est.fit(X)
density = self.density_est.score_samples(X)
tree = KDTree(X)
visited = np.zeros(X.shape[0], dtype=bool)
labels = np.zeros(X.shape[0], dtype=int)
cluster_id = 1
for i in range(X.shape[0]):
if visited[i]:
continue
visited[i] = True
neighbors = tree.query_radius(X[i].reshape(1,-1), self.eps)[0]
if len(neighbors) < self.min_samples:
labels[i] = -1
else:
points = [i] + list(neighbors)
mixture_probs = self.density_est.predict_proba(X[points])
mixture_probs /= mixture_probs.sum(axis=1)[:,np.newaxis]
for j in range(self.num_mixtures):
labels[points[mixture_probs[:,j] > 0.5]] = cluster_id
cluster_id += 1
self.labels_ = labels
return self
```
这个代码使用了 scikit-learn 库中的 GaussianMixture 模型来估计每个簇的概率密度,并使用 KDTree 来加速点之间的距离计算。在 fit 方法中,输入点云数据 X 是一个 Pandas DataFrame,其中第一列是题头信息,后面的列是点的坐标。可以使用 Pandas 库中的 read_csv 方法来读取 CSV 文件并转换为 DataFrame。使用方法如下:
```python
df = pd.read_csv('point_cloud.csv')
X = df.iloc[:,1:].values
mdbscan = MDBSCAN(eps=0.5, min_samples=5, num_mixtures=3)
mdbscan.fit(X)
labels = mdbscan.labels_
```
其中,eps 和 min_samples 分别是 MDBSCAN 算法中的两个超参数,num_mixtures 是 GaussianMixture 模型中的高斯混合分量数量,可以根据具体数据集进行调整。labels_ 属性是算法输出的每个点的簇标签,-1 表示噪点。
阅读全文