写一个不直接调用DBSCAN的包便将已有的xyz点云数据进行DBSCAN分成四类的Python代码
时间: 2023-12-10 12:38:31 浏览: 77
以下是一个简单的实现DBSCAN聚类算法的Python代码:
```python
import numpy as np
class DBSCAN:
def __init__(self, eps=0.5, min_samples=5):
self.eps = eps
self.min_samples = min_samples
def fit(self, X):
self.X = X
self.labels = np.zeros(len(X))
self.cluster = 0
for i in range(len(X)):
if self.labels[i] != 0:
continue
neighbors = self.region_query(i)
if len(neighbors) < self.min_samples:
self.labels[i] = -1
else:
self.cluster += 1
self.grow_cluster(i, neighbors, self.cluster)
def region_query(self, i):
neighbors = []
for j in range(len(self.X)):
if np.linalg.norm(self.X[i] - self.X[j]) < self.eps:
neighbors.append(j)
return neighbors
def grow_cluster(self, i, neighbors, cluster):
self.labels[i] = cluster
for j in neighbors:
if self.labels[j] == 0:
new_neighbors = self.region_query(j)
if len(new_neighbors) >= self.min_samples:
neighbors += new_neighbors
if self.labels[j] != 0:
continue
self.labels[j] = cluster
```
其中,`eps`和`min_samples`是DBSCAN算法的两个重要参数。`eps`表示邻域半径,`min_samples`表示最小样本数。在`fit`函数中,对每个点进行遍历,如果该点已被标记,则跳过;否则,求出该点的邻居集合,如果邻居数小于`min_samples`,则将该点标记为噪声点;否则,为该点分配一个新的簇号,并根据邻居集合逐步扩展簇。最终,返回聚类后的结果,即每个点对应的簇号。
阅读全文