class DnCNN(nn.Module): def init(self, channels, num_of_layers=17): super(DnCNN, self).init() kernel_size = 3 padding = 1 features = 64 layers = [] layers.append(nn.Conv2d(nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1, bias=False))) layers.append(nn.ReLU(inplace=True)) for _ in range(num_of_layers-2): layers.append(nn.Conv2d(nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1, bias=False))) layers.append(nn.BatchNorm2d(features)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Conv2d(nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1, bias=False))) self.dncnn = nn.Sequential(*layers) def forward(self, x): out = self.dncnn(x) return out怎么改为训练集输出[16,3,50,50],评估集输出[1,3,256,256]
时间: 2023-06-10 17:07:46 浏览: 176
DnCNN-pytorch.zip_DNCNN_DNCNN pytorch_DnCNN-pytorch_dncnn pyto
5星 · 资源好评率100%
你需要修改这个模型的输入尺寸和输出尺寸,以适应你的训练集和评估集。
首先,你需要将输入尺寸修改为[16,3,50,50],这可以通过将第一层卷积层的输入通道数从3改为16来实现。
其次,你需要将输出尺寸修改为[16,3,50,50]和[1,3,256,256],这可以通过在模型的最后添加一个卷积层来实现,该层的输出通道数为3。
修改后的代码如下所示:
```
class DnCNN(nn.Module):
def __init__(self, channels, num_of_layers=17):
super(DnCNN, self).__init__()
kernel_size = 3
padding = 1
features = 64
layers = []
layers.append(nn.Conv2d(in_channels=16, out_channels=64, kernel_size=3, padding=1, bias=False))
layers.append(nn.ReLU(inplace=True))
for _ in range(num_of_layers-2):
layers.append(nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1, bias=False))
layers.append(nn.BatchNorm2d(features))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1, bias=False))
layers.append(nn.Conv2d(in_channels=64, out_channels=3, kernel_size=3, padding=1, bias=False))
self.dncnn = nn.Sequential(*layers)
def forward(self, x):
out = self.dncnn(x)
return out
```
注意,这只是一个例子,具体的修改取决于你的具体数据集。你需要根据你的数据集的输入和输出尺寸来修改模型的结构。
阅读全文