class MobileNetV3(nn.Module): def __init__(self, pretrained = False): super(MobileNetV3, self).__init__() self.model = mobilenet_v3(pretrained=pretrained) def forward(self, x): out3 = self.model.features[:7](x) out4 = self.model.features[7:13](out3) out5 = self.model.features[13:16](out4) return out3, out4, out5
时间: 2024-01-10 11:02:58 浏览: 173
这段代码是用 PyTorch 实现 MobileNetV3 的模型。其中,MobileNetV3 是一个轻量级的神经网络模型,适合在移动设备等资源受限的场景下使用。在代码中,通过调用 mobilenet_v3 函数来获取 MobileNetV3 模型,然后将输入 x 分别经过模型的不同部分得到三个输出 out3、out4 和 out5,最终返回这三个输出。如果 pretrained 参数为 True,则使用预训练的参数初始化模型。
相关问题
class NormedLinear(nn.Module): def __init__(self, feat_dim, num_classes): super().__init__() self.weight = nn.Parameter(torch.Tensor(feat_dim, num_classes)) self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) def forward(self, x): return F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0)) class LearnableWeightScalingLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_norm = nn.Parameter(torch.ones(1, num_classes)) def forward(self, x): return self.classifier(x) * self.learned_norm class DisAlignLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_magnitude = nn.Parameter(torch.ones(1, num_classes)) self.learned_margin = nn.Parameter(torch.zeros(1, num_classes)) self.confidence_layer = nn.Linear(feat_dim, 1) torch.nn.init.constant_(self.confidence_layer.weight, 0.1) def forward(self, x): output = self.classifier(x) confidence = self.confidence_layer(x).sigmoid() return (1 + confidence * self.learned_magnitude) * output + confidence * self.learned_margin class MLP_ConClassfier(nn.Module): def __init__(self): super(MLP_ConClassfier, self).__init__() self.num_inputs, self.num_hiddens_1, self.num_hiddens_2, self.num_hiddens_3, self.num_outputs \ = 41, 512, 128, 32, 5 self.num_proj_hidden = 32 self.mlp_conclassfier = nn.Sequential( nn.Linear(self.num_inputs, self.num_hiddens_1), nn.ReLU(), nn.Linear(self.num_hiddens_1, self.num_hiddens_2), nn.ReLU(), nn.Linear(self.num_hiddens_2, self.num_hiddens_3), ) self.fc1 = torch.nn.Linear(self.num_hiddens_3, self.num_proj_hidden) self.fc2 = torch.nn.Linear(self.num_proj_hidden, self.num_hiddens_3) self.linearclassfier = nn.Linear(self.num_hiddens_3, self.num_outputs) self.NormedLinearclassfier = NormedLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs) self.DisAlignLinearclassfier = DisAlignLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True) self.LearnableWeightScalingLinearclassfier = LearnableWeightScalingLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True)
这段代码定义了一个名为MLP_ConClassfier的神经网络模型,它包含了多个子模块,包括三个不同的分类器:NormedLinearclassfier、DisAlignLinearclassfier和LearnableWeightScalingLinearclassfier。这些分类器都是基于输入特征进行分类的,并且使用不同的方法来实现分类功能。此外,该模型还包含了一个MLP网络,用于将输入特征映射到更高维的特征空间中。该模型的输入特征维度为41,输出类别数为5。
class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop)是什么意思
这段代码定义了一个多层感知机(Multi-Layer Perceptron,MLP)的神经网络模型。下面是每个部分的解释:
- `class Mlp(nn.Module):`:定义了一个名为`Mlp`的类,并继承自`nn.Module`,这意味着它是一个PyTorch模型。
- `def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):`:定义了类的初始化函数,用于初始化模型的参数。
- `super().__init__()`:调用父类(`nn.Module`)的初始化函数。
- `out_features = out_features or in_features`和`hidden_features = hidden_features or in_features`:如果未指定输出特征和隐藏特征的数量,则将它们设置为输入特征的数量。
- `self.fc1 = nn.Linear(in_features, hidden_features)`:定义了一个全连接层(`nn.Linear`),它将输入特征映射到隐藏特征。
- `self.act = act_layer()`:定义激活函数层,这里使用的是`act_layer`参数指定的激活函数(默认为`nn.GELU`)。
- `self.fc2 = nn.Linear(hidden_features, out_features)`:定义了另一个全连接层,它将隐藏特征映射到输出特征。
- `self.drop = nn.Dropout(drop)`:定义了一个Dropout层,用于在训练过程中随机丢弃一部分神经元,以减少过拟合风险。
这段代码的作用是创建一个MLP模型,并定义了模型的结构和参数。具体的使用方式需要根据实际情况进行调用和训练。
阅读全文