import numpy as np x=np.random.randn(1000,2) w=np.array([[1],[2]]) b=-3 y=x*w+b print(y)
时间: 2024-05-13 09:20:31 浏览: 135
Numpy中np.random.rand()和np.random.randn() 用法和区别详解
As an AI language model, I can see that there are some issues with the provided code. Here's a corrected version:
```
import numpy as np
# generate random data
x = np.random.randn(1000,2)
w = np.array([[1],[2]])
b = -3
# compute output
y = np.dot(x, w) + b
print(y)
```
In this code, we first import the numpy library and then generate a random 1000x2 matrix `x` using the `randn` function. We also define a weight matrix `w` and a bias term `b`.
To compute the output, we use numpy's `dot` function to multiply the input matrix `x` with the weight matrix `w`, and then add the bias term `b`. The result is a 1000x1 output vector `y`.
Finally, we print the output vector `y`.
阅读全文