STM32和keil5嵌入式实验:.缩写一个硬件延时函数delay(uint32ms),参数为需要的延时的毫秒数,调用实现任意毫秒延时。

时间: 2024-02-23 20:58:03 浏览: 162
好的,这是一个常见的嵌入式开发问题。以下是一个简单的实现: ```c void delay(uint32_t ms) { uint32_t i, j; for (i = 0; i < ms; i++) { for (j = 0; j < 8000; j++) { __NOP(); // 空操作,用于占用 CPU 时间 } } } ``` 这个函数通过嵌套两个循环来实现延时。外层循环是延时的毫秒数,内层循环是一个空循环,用于占用 CPU 时间。在 STM32 上,每个空循环需要大约 5 个时钟周期,因此 8000 次空循环大约需要 1 毫秒的时间。 请注意,这个函数是一个粗略的延时函数,实际延时时间可能会有一些误差。如果需要更加精确的延时,请使用定时器或者其他更加高级的延时技术。
相关问题

嵌入式实验STM32和keil5:1.缩写一个硬件延时函数delay(uint32ms),参数为需要的延时的毫秒数,调用实现任意毫秒延时。 2.三个灯的引脚都可以设置为某个定时器PWM的输出引脚,当三个灯以不同亮度输出,混合在一起时,就可以混出不同的颜色,即调光功能。尝试将三个引脚都配置这PWM功能,在程序中设置不同的占空比,观察亮度变化。

好的,针对你的问题,我来分别回答。 1. 实现任意毫秒延时的函数如下: ``` void delay(uint32_t ms) { uint32_t i, j; for(i = 0; i < ms; i++) { for(j = 0; j < 72000; j++); // 在 72MHz 的主频下,大约需要延时 1ms } } ``` 上面的函数使用了 for 循环来进行延时,每个循环大约需要 1ms 的时间,因此可以根据需要的延时毫秒数来确定循环次数。需要注意的是,这种方式并不是很准确,如果需要更精确的延时,可以使用定时器或者外部中断等方式来实现。 2. 通过 PWM 调光的代码如下: ``` #include "stm32f10x.h" void PWM_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); TIM_TimeBaseStructure.TIM_Period = 999; // PWM 信号频率为 1000Hz TIM_TimeBaseStructure.TIM_Prescaler = 71; // 时钟预分频为 72 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OC1Init(TIM2, &TIM_OCInitStructure); TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable); TIM_OC2Init(TIM2, &TIM_OCInitStructure); TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Enable); TIM_OC3Init(TIM2, &TIM_OCInitStructure); TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable); TIM_Cmd(TIM2, ENABLE); } void PWM_SetDutyCycle(uint16_t channel, uint16_t dutyCycle) { switch(channel) { case 1: TIM_SetCompare1(TIM2, dutyCycle); break; case 2: TIM_SetCompare2(TIM2, dutyCycle); break; case 3: TIM_SetCompare3(TIM2, dutyCycle); break; default: break; } } int main(void) { PWM_Init(); while(1) { PWM_SetDutyCycle(1, 100); // 设置第一个引脚的占空比为 10% PWM_SetDutyCycle(2, 500); // 设置第二个引脚的占空比为 50% PWM_SetDutyCycle(3, 900); // 设置第三个引脚的占空比为 90% delay(1000); // 延时 1 秒 } } ``` 上面的代码中,我们使用了定时器 TIM2 来产生 PWM 信号,将三个灯的引脚都设置为了 PWM 输出引脚。在主函数中,我们通过调用 PWM_SetDutyCycle 函数来设置不同的占空比,从而实现了三个灯的不同亮度输出。最后,我们加入了一个 delay 函数,延时 1 秒钟,这样可以看到灯的亮度变化。

keil5 stm32里延时函数怎么写

在Keil5 STM32中,可以使用以下方式编写延时函数: ```c #include "stm32f4xx.h" void delay_us(uint32_t us) { uint32_t ticks = us * (SystemCoreClock / 1000000); volatile uint32_t counter = 0; while (counter < ticks) { counter++; } } void delay_ms(uint32_t ms) { uint32_t ticks = ms * (SystemCoreClock / 1000); volatile uint32_t counter = 0; while (counter < ticks) { counter++; } } ``` 在这个例子中,我们定义了两个延时函数:`delay_us`和`delay_ms`。这两个函数都接受一个参数,即需要延时的时间(以微秒或毫秒为单位)。函数内部使用一个循环来实现延时,循环的次数根据系统时钟频率和延时时间计算得出。请注意,这里使用了`volatile`关键字来防止编译器优化掉延时循环。 使用这些延时函数时,只需在需要延时的地方调用相应的函数即可。例如,要延时100微秒,可以使用`delay_us(100)`;要延时1毫秒,可以使用`delay_ms(1)`。 请注意,这种延时方式适用于一般的延时需求,对延时精度要求不高的应用场景。如果需要更高精度的延时,可以考虑使用定时器或外部晶振来实现。 #### 引用[.reference_title] - *1* *2* *3* [STM32延时函数的四种方法](https://blog.csdn.net/huaweibiancheng3/article/details/124956486)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
阅读全文

相关推荐

最新推荐

recommend-type

嵌入式实验报告 stm32f103 跑马灯实验 GPIO口操作

在本实验报告中,我们关注的是“嵌入式实验报告 STM32F103 跑马灯实验 GPIO 口操作”。...通过这个实验,学生不仅能掌握STM32的基础编程,还能了解到GPIO口的配置和应用,为后续的嵌入式开发打下坚实基础。
recommend-type

STM32编程的最新KEIL5安装包

总的来说,STM32编程的最新KEIL5安装包为开发者提供了一个全面的开发环境,使得STM32的应用开发变得更加高效和简便。随着版本的不断更新,开发者可以期待更多优化和新特性,以提升开发体验和项目质量。因此,保持...
recommend-type

STM32 SRAM启动的 KeiL 配置

STM32系列微控制器是基于ARM Cortex-M内核的单片机,广泛应用于嵌入式系统设计。在某些情况下,我们需要让STM32从SRAM而不是默认的Flash启动,这通常是为了快速响应、调试或者在Flash编程过程中保持系统运行。在本篇...
recommend-type

stm32开发 - 远离 Keil uVision, 回到 Visual Studio

在使用Visual Studio进行stm32开发时,我们需要创建一个项目,然后编写代码。创建项目时,我们需要选择正确的项目模板,并配置好项目的目录结构和编译器设置。编写代码时,我们可以使用Visual Studio提供的各种功能...
recommend-type

STM32工程在keil下怎么移植到IAR环境(stm32f103c8).docx

在开始移植之前,你需要先在计算机上新建一个名为“LED_CTRL”的文件夹,再在这个文件夹内创建三个子文件夹:CMSISI(存放系统启动相关文件)、FWLIB(存放库文件)和USER(存放用户自定义代码)。 2. **拷贝文件*...
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。