torch 搭建eegnet网络模型,并解释每句代码的意思、
时间: 2024-01-22 22:20:13 浏览: 179
好的,以下是使用PyTorch搭建EEGNet网络模型的代码及相关注释:
```python
import torch.nn as nn
import torch.nn.functional as F
class EEGNet(nn.Module):
def __init__(self, activation='ReLU', dropout_rate=0.5, kernel_length=64, F1=8, D=2, F2=16):
super(EEGNet, self).__init__()
# 定义第一层卷积
self.conv1 = nn.Conv2d(1, F1, (1, kernel_length), stride=(1, D), bias=False)
self.batchnorm1 = nn.BatchNorm2d(F1, False)
# 定义深度可分离卷积
self.depthwiseConv = nn.Conv2d(F1, F1 * D, (2, 1), groups=F1, bias=False)
self.batchnorm2 = nn.BatchNorm2d(F1 * D, False)
self.activation = getattr(nn, activation)()
self.avgpool = nn.AvgPool2d(kernel_size=(1, 4))
self.dropout = nn.Dropout(dropout_rate)
# 定义全连接层
self.fc1 = nn.Linear(F1 * D * 29, F2)
self.batchnorm3 = nn.BatchNorm1d(F2, False)
self.fc2 = nn.Linear(F2, 1)
def forward(self, x):
# 输入x的shape为(batch_size, channels, samples)
x = x.unsqueeze(1) # 转换为(batch_size, 1, channels, samples)
# 第一层卷积
x = self.conv1(x)
x = self.batchnorm1(x)
x = self.activation(x)
# 深度可分离卷积
x = self.depthwiseConv(x)
x = self.batchnorm2(x)
x = self.activation(x)
x = self.avgpool(x)
x = self.dropout(x)
# 全连接层
x = x.view(-1, self.fc1.in_features) # 将x展开成(batch_size, F1 * D * 29)
x = self.fc1(x)
x = self.batchnorm3(x)
x = self.activation(x)
x = self.dropout(x)
x = self.fc2(x)
return x
```
这是一个用于处理EEG信号的轻量级CNN模型EEGNet。下面逐行解释每句代码的意思:
```python
import torch.nn as nn
import torch.nn.functional as F
```
导入PyTorch中的神经网络模块和函数模块。
```python
class EEGNet(nn.Module):
def __init__(self, activation='ReLU', dropout_rate=0.5, kernel_length=64, F1=8, D=2, F2=16):
super(EEGNet, self).__init__()
```
定义一个名为EEGNet的神经网络模型类,并继承自nn.Module类。在初始化函数中,定义了一些超参数,包括激活函数类型、dropout率、卷积核长度、第一层卷积输出通道数、深度可分离卷积的dilation rate、第二层全连接层的输出通道数。
```python
# 定义第一层卷积
self.conv1 = nn.Conv2d(1, F1, (1, kernel_length), stride=(1, D), bias=False)
self.batchnorm1 = nn.BatchNorm2d(F1, False)
```
定义第一层卷积,包括1个输入通道、F1个输出通道、1行kernel_length列的卷积核、沿着samples方向步长为D、不使用偏置项。然后定义BatchNorm2d层,对conv1的输出进行归一化。
```python
# 定义深度可分离卷积
self.depthwiseConv = nn.Conv2d(F1, F1 * D, (2, 1), groups=F1, bias=False)
self.batchnorm2 = nn.BatchNorm2d(F1 * D, False)
self.activation = getattr(nn, activation)()
self.avgpool = nn.AvgPool2d(kernel_size=(1, 4))
self.dropout = nn.Dropout(dropout_rate)
```
定义深度可分离卷积,包括F1个输入通道、F1*D个输出通道、2行1列的卷积核、每个输入通道对应一个输出通道、不使用偏置项。然后定义BatchNorm2d层,对depthwiseConv的输出进行归一化。接下来定义激活函数、平均池化层和dropout层。
```python
# 定义全连接层
self.fc1 = nn.Linear(F1 * D * 29, F2)
self.batchnorm3 = nn.BatchNorm1d(F2, False)
self.fc2 = nn.Linear(F2, 1)
```
定义全连接层,输入大小为F1*D*29,输出大小为F2。定义BatchNorm1d层,对fc1的输出进行归一化。最后定义一个线性层,输入大小为F2,输出大小为1。
```python
def forward(self, x):
# 输入x的shape为(batch_size, channels, samples)
x = x.unsqueeze(1) # 转换为(batch_size, 1, channels, samples)
# 第一层卷积
x = self.conv1(x)
x = self.batchnorm1(x)
x = self.activation(x)
# 深度可分离卷积
x = self.depthwiseConv(x)
x = self.batchnorm2(x)
x = self.activation(x)
x = self.avgpool(x)
x = self.dropout(x)
# 全连接层
x = x.view(-1, self.fc1.in_features) # 将x展开成(batch_size, F1 * D * 29)
x = self.fc1(x)
x = self.batchnorm3(x)
x = self.activation(x)
x = self.dropout(x)
x = self.fc2(x)
return x
```
定义前向传播函数,输入是x,表示EEG信号,其shape为(batch_size, channels, samples)。首先将x转换为(batch_size, 1, channels, samples),表示有1个输入通道。然后依次进行第一层卷积、BatchNorm2d、激活函数、深度可分离卷积、BatchNorm2d、激活函数、平均池化、dropout、全连接层、BatchNorm1d、激活函数、dropout和线性层操作。最后得到一个输出,表示EEG信号的预测结果。
阅读全文